Озу что это такое в компьютере


Оперативная память — что это такое, зачем она нужна, на что влияет и как ее увеличить?

 

[show/hide]

ОЗУ − что это такое в компьютере, ноутбуке и телефоне

Аббревиатура ОЗУ расшифровывается как оперативное запоминающее устройство. Внешне оперативная память компьютера выглядит как набор микросхем для хранения данных. ОЗУ энергозависима, то есть при отключении питания всё, что хранилось в памяти, будет стёрто. Служит оперативная память для временного хранения информация. В отличие от жёсткого диска, обладает скоростью работы в разы выше.

Что значит термин «оперативная память»? Он означает, что ОЗУ обеспечивает именно оперативную доставку данных от приложения к памяти и наоборот. Она используется во многих электронных устройствах. Это и компьютеры, и планшеты со смартфонами, и роутеры, и много-много другой техники, которой, так или иначе, требуется сохранить набор временных данных.

Что такое оперативная память для компьютера или ноутбука

Естественно, что чаще всего при упоминании слова оперативная память понимается именно ОЗУ для компьютера. В компьютерах, собственно как и везде, оперативная память предназначена для хранения данных. Выглядит она обычно как небольшая микросхема с контактами для установки в шину материнской платы. На микросхеме размещены массивы из конденсаторов и транзисторов.

По сути, именно они и хранят заряд, формируя, таким образом, двоичный код из набора битов, в зависимости от того, существует ли заряд. Из-за, того что в оперативной памяти ПК используются конденсаторы, заряд периодически уменьшается. И нужно как-то поддерживать это в актуальном состоянии. Для чего оперативной памяти и требуется регенерация, которая происходит обычно в течение 2 миллисекунд. Однако этот процесс снижает общую производительность ОЗУ из-за того, что обращение к памяти ненадолго приостанавливается.

Что такое оперативная память телефона

ОЗУ телефона выполняет, по сути, ту же функцию, что и в компьютере, — хранит данные. Ввиду того что производительность мобильных систем, таких как планшеты и телефоны, довольно мала, по сравнению с компьютерами, то ОЗУ обычно имеет гораздо меньший объём.

Да и своими размерами она значительно уступает компьютерной.

Как устроена ОЗУ

При запуске какой-либо программы на компьютере или телефоне ей требуется где-то расположить переменные, которыми она собралась оперировать. Приложение сообщает операционной системе, что ей нужно сохранить определённый объём данных. Система выделяет необходимый участок памяти. И до тех пор, пока программа запущена, она может пользоваться всем выделенным ей сегментом ОЗУ. При необходимости программа может дополнительно запросить место под новые переменные или же, наоборот, освободить место в ОЗУ. Физически же на микросхеме при заполнении данных возникают заряды в конденсаторах. А при освобождении происходит их обнуление.

Кстати, стоит отметить, что кэш процессора также является ОЗУ. Просто это память статического типа. Главное её достоинство — скорость работы и отсутствие необходимости в регенерации. Такая память представляет собой набор транзисторов, собранных в триггер. Из-за этого стоимость такой памяти гораздо выше, чем простой динамической. Именно поэтому она используется как кэш в процессорах.

Характеристики ОЗУ

Помимо главной характеристики объёма, существует ещё ряд характеристик, по которым можно определить быстродействие микросхемы.

Форм-фактор

Форм-фактор − это вариант конструктивного исполнения. Друг

Все об оперативной памяти — гайд и тесты в разных режимах работы | Оперативная память | Блог

Сколько оперативки нужно для современных игр, как правильно подобрать и установить несколько планок? А разгон, а точно хорошо все будет? В этом материале подробно разбираем все вопросы про оперативную память и проводим сравнительные тесты. Информация актуальна как для DDR3, так и для DDR4 и ориентирована на наиболее распространенные платы с двухканальным режимом работы.

Варианты установки памяти

Первый шаг к стабильной и быстрой памяти — ее правильная установка. Просто старайтесь держать в уме следующие факты.

Установка одной, двух, трех или четырех планок — что лучше?

Для оптимального быстродействия ставить лучше четное количество планок памяти. Следующий график показывает, как меняется производительность в зависимости от количества установленных модулей. Дополнительно в него были добавлены два значения: комбинация из 4 ГБ и 8 ГБ модулей на частоте 1333 и 1600 МГц. Command Rate установлен на единицу.

Какой вывод можно сделать? Одна планка памяти выдает худшую производительность, так как отсутствует двухканальный режим. Две планки дают стандартную производительность. Три планки хуже, чем две, потому что контроллеру приходится работать одновременно с двухканальным и одноканальным режимами, а ваша система не может знать наверняка, когда какой требуется. Четыре планки выдают чуть большую производительность (всего на 1-2 %), чем две, но не за счет увеличенной емкости, а за счет количества модулей, так как у контроллера в распоряжении появляется больше банков памяти, к которым можно обратиться (аналогично ранговости).

Как правильно установить две планки памяти, если у материнской платы четыре слота?

Если у вас четыре или более слотов под ОЗУ на материнской плате, тогда знайте, что они разделены на пары и обычно окрашены в разные цвета. Например, первая пара черная, а вторая красная. Распространенная ошибка, когда две планки ставят рядом в разные пары. Это приводит к тому, что память будет работать в одноканальном режиме и выдавать вдвое меньшую скорость копирования, чем она могла бы быть. По этой же причине, когда ограничен бюджет, рекомендуют купить две планки по 4 ГБ, а не одну на 8 ГБ. Проверить, какой режим работы используется у вас в данный момент, можно с помощью программы CPU-Z.

Существуют также гибридные материнские платы, которые имеют слоты как DDR3, так и DDR4 (или DDR2 + DDR3 на старых платах) одновременно. Память разных поколений вкупе использовать нельзя, компьютер просто не запустится.

Можно ли ставить память с разной частотой или разными таймингами вместе?

Оперативную память с разной частотой и разными таймингами можно использовать вкупе. В этом случае все модули заработают на параметрах более слабого. Обычно никаких конфликтов это не создает.

Можно ли ставить память c разной емкостью вместе?

Оперативную память разного объема тоже можно ставить вместе. В этом случае часть памяти работает в двухканальном режиме, а часть — в одноканальном. На практике это дает небольшой прирост производительности, но до полноценного двухканального режима немного не дотягивает. В редких случаях материнская плата может не поддерживать такой комбинированный режим работы, и включится одноканальный. Тесты смотрите в начале раздела.

Можно ли ставить память с разной ранговостью вместе?

Совмещать одноранговую и двухранговую памяти парой в двухканальный режим не рекомендуется, так как это может приводить к вылету системы. Опять же, все зависит от вашей материнской платы. А вот поставить две разные пары можно — если первая пара модулей будет двухранговой, а вторая — однораноговой, то все должно быть нормально. Более подробно об этом параметре смотрите в разделе характеристик.

Максимальный объем: сколько можно поставить?

У каждой материнской платы есть свои ограничения: максимальный поддерживаемый объем памяти и допустимая емкость одного модуля. Необходимо смотреть спецификации:

Видим, что материнка имеет 4 слота и поддерживает до 32 ГБ памяти. Простым делением узнаем, что максимальный объем одного модуля равен 8 гигабайтам.

Если попытаться поставить 16-гигабайтный модуль в плату, которая поддерживает только 8-гигабайтный, то компьютер либо не запустится, либо увидит только часть памяти.


По причине всяческих мелких нюансов и возможных несовместимостей лучший вариант — покупка четного количества совершенно одинаковых модулей памяти, которые нередко продаются комплектом, и их последующая установка парами, то есть в слоты одинакового цвета. Если вы планируете апгрейд, то попытайтесь найти в продаже идентичный модуль или же просто продайте старый и купите новую пару.

Теоретически можно намешать все подряд — по худшему сценарию забить три слота памятью с разным объемом, частотой и таймингами, и это заработает. Однако вашей материнской плате придется привести все это дело к общему знаменателю, что наверняка даст ощутимую потерю производительности.

Короче говоря, действуете по обстоятельствам. Не нужно добавлять лишние модули без уверенности в их необходимости. Но и держать всего один модуль в системе тоже не эффективно.

Существуют также трех-, четырех- и шестиканальные материнские платы, но они менее распространены, и для них действуют свои ограничения и особенности, о которых можно прочитать в руководстве пользователя.

Тестовая конфигурация

Все тесты этой статьи будут выполнены при разрешении 1920х1080 и включенной 16-кратной анизотропной фильтрации. По умолчанию использоваться будут только две планки памяти, за исключением тестов, рассчитанных на иное количество. Частота процессора зафиксирована на значении 4,2 ГГц, а Command Rate = 2, если не указано другое.

  • Блок питания: Corsair RM 850W Gold
  • Материнская плата: Asus Maximus VII Hero (BIOS 3201)
  • Процессор: Intel Core i7 4790K
  • Видеокарта: Zotac GeForce GTX 1070 AMP! Extreme
  • Оперативная память: 4 х Kingston HyperX Savage [HX318C9SRK2/8]
  • Системный накопитель: SSD Smartbuy Revival (1) 240 GB
  • Игровой накопитель: Smartbuy Splash (2019) 256 GB
  • Операционная система: Windows 7 SP1 x64

Профили памяти

Как посмотреть поддерживаемые профили памяти?

Если памяти нет у вас на руках, то очевидным вариантом будет просто загуглить маркировку интересующей вас модели и перейти на сайт производителя, почитать обзоры и т. д.

Если память уже установлена в вашем ПК, то можно воспользоваться бесплатной утилитой CPU-Z. Это максимально легкая и простая программа, которая показывает четыре основных профиля (но не все поддерживаемые). Просто выбираем номер слота в разделе SPD и смотрим данные. Можно заметить, что частота (Frequency) отображается какая-то низкая. Дело в том, что DDR обозначает Double Data Rate, то есть двойная скорость передачи данных. Чтобы получить актуальную частоту, вам нужно умножить значение на два.

Также существует и платный аналог — AIDA64. Она не только показывает все профили памяти, но еще и позволяет узнать латентность и пропускную способность.

Что такое JEDEC и XMP?

Это названия профилей вашей оперативной памяти.

JEDEC — стандарт, предлагающий единый базовый набор таймингов для определенной частоты, на которой и заработает ваша память после установки в ПК. Помимо основного профиля, который обычно и указан в характеристиках товара, есть еще несколько дополнительных скрытых. Нужны они для того, чтобы память могла работать и на пониженных частотах, если материнская плата не поддерживает высокие.

XMP — это оверклокерский набор параметров, тщательно протестированный с завода конкретно для вашей модели памяти. Профиль не следует каким-либо стандартам и предлагает наилучшие параметры, выбранные производителем. То есть, выбрав данный профиль в настройках биоса, вы получите легкий и безопасный разгон. В отличие от JEDEC, поддерживается не всеми моделями, нужно смотреть спецификации. Чтобы его активировать, ваша материнская плата тоже должна поддерживать XMP профили.

Пример памяти из конфигурации: ее базовый профиль JEDEC это 1600 МГц с таймингами [11-11-11-28], простым переключением на XMP-1866 частота меняется на 1866 МГц с таймингами [9-10-11-27], то есть мы получаем не только повышенную частоту, но и более низкие задержки, что точно хорошо скажется на производительности системы.

Что будет, если в биосе выставить неподдерживаемый профиль? 

В случае, если вы попытаетесь выставить в биосе частоту, для которой нет профиля у вашей памяти, то произойдет один из трех возможных вариантов:

  1. Материнская плата выставит тайминги от поддерживаемого профиля, максимально близкого к той частоте, что выставили вы.
  2. Материнская плата выставит универсальный оверклокерский набор таймингов, В моем случае это [11-13-13-35], и они подходят для всех частот вплоть до 2400 МГц.
  3. Компьютер попросту не запустится и потребуется сброс настроек.

Тесты профилей в приложениях

Для диаграмм я решил использовать 5 профилей: наихудший JEDEC, родной JEDEC, оба поддерживаемых XMP профиля и разогнанный профиль (OC).

«Сэм», «Резидент» и «Метро» восприняли увеличение скорости памяти равнодушно, так как им полностью хватает ресурсов процессора. А вот «Трекмания» активно умеет использовать только одно ядро, которое загружено на 100 %, поэтому память оказывает ощутимое влияние на частоту кадров. 

Характеристики памяти

Частота

Частота — это величина, показывающая, сколько операций может выполнить память за промежуток времени. Считается одной из главных характеристик наравне с таймингами. Чем она выше — тем лучше.

Следующие графики покажут, насколько сильно будет меняться производительность в зависимости от частоты. Тайминги при этом зафиксированы на отметке [11-13-13-35].

Тайминги

Тайминги памяти — это внутренние задержки, выраженные в тактах, то есть время, по прошествии которого происходят операции, чтения, записи, обработки информации, подачи напряжения и тд. Чем они меньше – тем лучше. В характеристиках обычно указывают только 3 или 4 тайминга, которые оказывают наибольше влияние на производительность, например 11-11-11-28 (Они же “CL”-“tRCD”-“tRP”-“tRAS”).

Помимо основных вышеуказанных таймингов, существует еще более 20, доступных для настройки в биосе. Их ручной разгон абсолютно бессмысленнен. Ради интереса, я решил попробовать выжать из них максимум, базируясь на XMP профиле. Большинство из них удалось снизить на 1-3 такта, что в сумме дало выигрыш… в 0,4 наносекунды. Стоило ли оно того? Определенно нет. Никакого влияния на приложения замечено не было.

В виде исключения выступают “tRFC“ (REF Cycle Time) и “tREFI” (Refresh Interval), разгоном лишь этих двух параметров можно выиграть до 4 наносекунд латентности. Причем первый нужно понижать, а второй наоборот – повышать.

Следующие графики покажут, насколько сильно будет меняться производительность при разных наборах основных таймингов. Частота при этом зафиксирована на отметке 1600 МГц.

Отдельно стоит поговорить о таком «мистическом», параметре как Command Rate. Он может принимать два значения: 1, 2. Несмотря на то, что его приписывают к основным таймингам памяти, к ней самой он отношения не имеет. Это лишь скорость контроллера, который управляет вашей памятью, время, необходимое на преобразование команд.

Как он влияет на стабильность системы — четкого ответа нет, все зависит от качества вашей материнской платы. В интернете часто пишут, что уменьшать этот параметр не рекомендуется, так как память теряет разгонный потенциал и становится нестабильной. Но лично в моей практике не попадался ни один ПК, который бы плохо работал от выставления Command Rate на 1. Более того, в случае тестовой конфигурации на разгонный потенциал это не повлияло ни на йоту.

Разница между CR1 и CR2 может составлять от 0 до 5 % производительности в зависимости от ряда факторов. А если говорить о латентности, то разница составляет 0.5-1.5 наносекунды.

Пропускная способность

Пропускная способность — это скорость работы памяти с данными. То есть объем информации, который память может обработать за секунду времени. Например, 30 гигабайт в секунду.

Вопрос: что лучше — 1 планка на 1600 МГц или 2 планки по 800 МГц? Казалось бы, ответ очевиден, в обоих случаях достигается одинаковая пропускная способность (12 ГБ/сек), но у памяти с частотой 800 МГц ниже тайминги, значит она должна победить. Однако внезапно происходит полный разрыв шаблона, так как одноканальная планка на 1600 МГц работает быстрее на 15 %. Почему же так?

А дело в том, что пропускная способность памяти и ее частота — это совершенно разные параметры. Повышение частоты увеличивает пропускную способность и уменьшает латентность, однако повышение лишь пропускной способности не сказывается на других параметрах. Активация двухканального режима удваивает именно пропускную способность, а не производительность. Поэтому прирост скорости в приложениях может составлять от 1 до 30 % в зависимости от вашего процессора и ряда других факторов.

Емкость. Сколько гигабайт памяти нужно?

На 2020 год актуальными будут только два варианта: 2 х 4 ГБ или 2 х 8 ГБ. Почему так?

Операционная система, будь то Windows 7 или Windows 10, потребляет от 1 до 3 ГБ памяти в зависимости от загруженности программами. При необходимости, ОС может освобождать память, скидывая данные в файл подкачки, ужимаясь всего в ~600 мегабайт. А большинство игр потребляют от 1 ГБ до 4 ГБ памяти без учета операционной системы.

Лично мной, помимо тестовых игр для графиков были также протестированы и следующие:

  • Killing Floor 2
  • Project Cars 2
  • GTA 5
  • Far Cry 5
  • Shadow of the Tomb Raider

Все они без проблем заработали всего с 4 ГБ памяти в системе, несмотря на то, что у некоторых указано минимум 8 ГБ в системных требованиях. Единственное замеченное ухудшение по сравнению с 16 ГБ — более продолжительные загрузки, и в некоторых случаях фризы, когда память забита впритык.

Само собой, сборка с 8 ГБ памяти уже отыграет себя по полной, не заставляя ОС и игру выкручиваться под маленький объем. Тандем из 2 х 4 ГБ памяти и SSD накопителя будет отличным решением для среднебюджетного ПК. Ну, а 2 х 8 ГБ — идеально для мощного топового ПК без компромиссов.

Но почему не 32 ГБ и более? Потому что это не нужно, вот прямо совсем. Серьезно, лично я, какую бы мультизадачную ахинею ни творил на своем компьютере, ни разу не видел, чтобы было загружено более 12 ГБ оперативной памяти. Ну, разве что если ее специально забивать. Конечно, дело ваше, если есть бюджет, то почему бы не порадовать себя циферками в свойствах системы, да и рам диском тоже можно побаловаться.

Что такое латентность?

Латентность — это некая величина в наносекундах, представляющая собой совокупность частоты и таймингов памяти, а также частоты процессора. Чем она меньше — тем лучше. Обычно именно на этот параметр ориентируются при разгоне и оптимизации памяти.

Если не гнаться за максимальной производительностью, то для игр вполне достаточно <=70 наносекунд латентности, чтобы связка процессор-память работала как надо.

Что такое ранговость?

Ранговость памяти (иногда еще называют «упаковка чипов») — это способ набора чипов на ее плате. То есть количество банков, к которым может обратиться контроллер памяти. Теоретически, чем их больше — тем лучше. Если у вашей памяти более 8 чипов, значит она двухранговая, а если меньше или равно — одноранговая.

Двухранговая память быстрее, чем одноранговая, но это преимущество незначительно. Прирост может составить 1-2 % при условии, что приложению не хватает процессора. В большинстве же случаев разница вообще не будет заметна. 

Я считаю, что это не то, о чем стоит париться при выборе памяти (только если вы не хотите докупить второй модуль к первому имеющемуся). Тем более, не все производители пишут эту характеристику, да и наличие кожуха осложняет диагностику. Лучше обратить внимание на тайминги и частоты. Проверить ранговость можно с помощью все той же CPU-Z.

Что такое ECC и буферная память?

Это всего лишь параметры, относящиеся к серверной оперативной памяти. ECC отвечает за коррекцию ошибок, а буферизация памяти уменьшает электрическую нагрузку. Пользователям домашних ПК это не нужно, да и стоит такая память намного дороже. Короче, не забивайте голову.

Разгон

Разгон позволяет взять частоты, которые значительно превышают стандартные значения профилей вашей памяти. На примере DDR3 — переключить с 1333 МГц на 1600 МГц удается почти всегда. Само собой, материнская плата тоже должна поддерживать большую частоту.

Вариант №1. Простой универсальный

Идеальная попытка/способ разгона для новичков. Мы просто повышаем в биосе частоту на одну ступень из списка доступных и смотрим, что из этого получилось. Компьютер запустился? Отлично, повышаем еще. Как только нашли максимальную стабильную частоту, то проверяем латентность через айду, стала ли она лучше, или такой разгон был бессмысленнен, и параметры стоит вернуть на место.

В моем случае память разогналась до частоты 2400 МГц. Универсальный набор таймингов идеально вписался, значения [11-13-13-35] стали для нее наилучшими и дополнительных действий не потребовалось.

Вариант №2. Продвинутая настройка

Автоподбор таймингов платой не всегда может хорошо подойти под ту частоту, которую вы выставили. Задержки могут получиться слишком большими, что в итоге даст меньшую производительность, чем на стандартном профиле. Или же тайминги останутся неизменными, слишком низкими, что попросту не даст взять высокую частоту.

В этом случае разгон проводится вручную, и я объясню его на примере памяти с частотой 1600 МГц и таймингами 11-11-11 (четвертый тайминг я намеренно не указал, так как частота на него практически не влияет, можно использовать базовый).

  1. Повышаем тайминги сразу на 5 тактов до 16-16-16.
  2. Начинаем искать максимальную частоту: ставим 1866 МГц — компьютер стартует. 2133 МГц — компьютер стартует. 2400 МГц — компьютер стартует. 2600 МГц — компьютер не запускается. Откатываемся обратно на 2400 МГц — это и есть наша наибольшая частота.
  3. Оптимизируем тайминги, так как 16-16-16 — вероятно не лучший набор для нашей частоты. Поочередно понижая каждый из них на единичку и перезагружаясь, получаем значения 11-13-13, которые будут наилучшими для частоты 2400 МГц. Вот и весь принцип разгона.

Стоп-стоп, а как же напряжение? Да, при разгоне часто советуют повысить напряжение, якобы это улучшает стабильность и дает больший разгонный потенциал. На практике, память разгоняется и стабильно работает даже без повышения напряжения, либо же материнская плата сделает все за вас в режиме Auto. Если очень хочется попробовать улучшить значения разгона, можете повысить напряжение (на свой страх и риск) до 1,65 В для DDR3 или же до 1,45 В для DDR4.

Главное — по окончании разгона не забудьте проверить память на ошибки, например встроенной в операционную систему утилитой «Средство проверки памяти Windows» или же программой MemTest86. Ведь иногда память может становиться нестабильной после разгона, и проявится это далеко не сразу — например, на следующий день внезапно зависнет система или игра. В таком случае тайминги нужно будет повысить дополнительно еще на 1 такт или же вовсе вернуть настройки по умолчанию.

Что делать, если после разгона памяти компьютер перестал запускаться?

Если компьютер ушел в бесконечный цикл перезагрузки, то можно попробовать обесточить блок питания примерно на 10 секунд, а затем снова включить. Биос выдаст сообщение в духе «Overclocking Failed» и даст вам возможность поменять настройки или сбросить их. Работает не на всех платах.

Второй вариант — нажать специальную кнопку на плате для сброса настроек биоса. Обычно она подписана как «clr_cmos».

Третий способ, который точно сработает — вытащить батарейку материнской платы на несколько минут и вставить обратно. В результате такого действия сбросятся все настройки биоса.

Взаимодействие памяти с комплектующими ПК

Оперативная память — это посредник ваших комплектующих, представляющий из себя следующую схему: Быстрая память → более быстрый процессор → лучшее использование потенциала видеокарты → больший FPS в играх.

Если вашей игре не хватает производительности процессора/памяти, то и видеокарта не сможет грузиться на 100 % (при отключенной вертикальной синхронизации).

Влияние памяти на процессор

Оперативная память тесно связана с вашим процессором. Чем быстрее память, тем лучше отклик процессора и его производительность. Простой разгон памяти может увеличить потенциал процессора до +15 %, что хорошо видно на примере тестов в программе WinRar.

Для полноты картины я решил провести еще один квартет тестов, для которых частота процессора была уменьшена до 2,4 ГГц и количество потоков уменьшено вдвое.

Здесь уже прирост чуть более ощутим в отличие от 1-кадрой разницы при частоте 4,2 ГГц.

Примечание: даже если ваша игра показывает, что процессор загружен всего на 50 %, это не обязательно означает, что ей хватает его производительности. То есть увеличение частоты процессора или памяти все равно может улучшить частоту кадров.

Влияние процессора на память

Что-что? И в обратном направлении тоже? Да, все верно: чем выше частота процессора, тем ниже латентность памяти. При этом количество ядер или потоков значения не имеют.

Следующий график наглядно показывает зависимость латентности от частоты процессора на разогнанном профиле памяти (2400 МГц). Command Rate выставлен на единицу.

Получается, что 43,2 наносекунды — это наилучшая латентность, которую мне удалось получить на тестовой конфигурации.

Влияние на дискретную видеокарту

Оперативная память не оказывает прямого воздействия на видеокарту, ведь у видеокарты есть собственная память, куда игрой складываются все необходимые графические данные.

Чтобы убедиться в этом наверняка, я использовал игровой бенчмарк Aliens vs. Predator Benchmark. Его преимущество состоит в минимальном использовании процессора. Разница между наихудшим одноканальным профилем памяти и наилучшим двухканальным профилем, при средней частоте кадров ≈175 составила… всего 1 фпс, что вообще в пределах погрешности.

Влияние на встроенную видеокарту

А вот для встроенных видеокарт все как раз таки наоборот — они не имеют собственной памяти и просто заимствуют оперативную. То есть, чем быстрее будет ваша память, тем более высокую частоту кадров в играх вы получите.

Для следующего графика будет использоваться встроенная Intel HD Graphics 4600. Для наглядности, базовый профиль JEDEC был протестирован в одноканальном и в двухканальном режимах, в графиках они отмечены как SCJ и DCJ соответственно.

Прочие вопросы

Что такое файл подкачки?

Файл подкачки — это специальный файл на вашем накопителе, в который система может сливать информацию с оперативной памяти, чтобы на ней освободилось место.

Например, если у вас всего 4 ГБ памяти, операционная система в данный момент использует 2 ГБ, и вы хотите запустить игру, которой единолично требуется 3 ГБ памяти, то ОС сохраняет данные ненужных в данный момент процессов в файл подкачки, что освобождает место в оперативной памяти и дает возможность запустить ту самую игру.

Часть вашего накопителя просто становится очень медленной оперативной памятью. И если системе внезапно понадобится считать эти самые данные из файла подкачки, то это приведет к долгим загрузкам, лагам и подвисаниям.

Даже если у вас много оперативной памяти, совсем отключать файл подкачки не рекомендуется, так как многие приложения спроектированы использовать его в любом случае. В общем, для файла подкачки можно выделить 4-8 ГБ свободного места — этого вполне достаточно.

Что лучше — DDR3 или DDR4?

Немного больной вопрос современного гейминга, так как DDR4 проигрывает по показателям таймингов, но имеет больший потенциал на частоты.

В качестве примера возьмем частоту 2133 МГц — это высокое значение для DDR3 и одно из базовых для DDR4. И если стандарт JEDEC предлагает тайминги 13-13-13 для DDR3-2133, то для DDR4-2133 эти значения составляют 15-15-15, что ощутимо хуже. Получается, чтобы DDR4 начала демонстрировать превосходство над DDR3 ей нужно иметь примерно на 30 % более высокую частоту.

Бюджетная DDR4 даже может являться причиной фризов в требовательных играх из-за высоких таймингов и, соответственно, латентности. Но выбора у нас в любом случае нет, так как DDR3 постепенно уходит в небытие, а на горизонте уже маячит DDR5.

Нужен ли памяти радиатор или кулер?

Память греется слабо относительно прочих комплектующих. Ее температура обычно не превышает 65 градусов, то есть она может без проблем обходиться без радиатора и тем более без специального кулера. Однако память с красивой металлической оболочкой выглядит намного лучше, да и от пыли и случайных царапин обеспечивается неплохая защита. Плюс дополнительная страховка от перегрева для оверклокерских решений.

Почему мнения о важности памяти расходятся?

Причиной тому может быть множество факторов, будь то динамическое окружение в играх или кривая сборка операционной системы ютуб блогера. Но в основном это разные конфигурации ПК, на которых проводятся тесты. Например, процессоры AMD, как правило, сильнее зависят от памяти, чем Intel. Да и разница между встроенной и дискретной графикой колоссальна. И если пользователь изначально имеет средний процессор и так себе память, то их оптимизация явно даст больший эффект, чем попытка разогнать и без того хорошую сборку. Поэтому мнения и расходятся: одни говорят, что влияние памяти нулевое, а другие получают до 30 % прироста производительности.

Заключение

Итак, подведем краткий итог того, что мы узнали из этой статьи.

  • Ускорение памяти не оказывает влияния на видеокарту, но может немного увеличить потенциал процессора и встроенной графики.
  • Важно иметь как минимум две планки памяти в системе для активации двухканального режима.
  • Если ваша память поддерживает XMP профили, то не забудьте их включить в биосе.
  • Память с разными характеристиками можно смешивать, но все же есть риски потерять часть производительности.
  • Двухканальная и двухранговая память — это не одно и то же. Аналогично можно сказать о частоте и пропускной способности.

Как выбрать оперативную память | Оперативная память | Блог

С давних времен в среде профессиональных (и не очень) пользователей ПК бытует выражение, что «памяти много не бывает». Конечно, как и любое ультимативное высказывание, воспринимать его нужно в контексте и со здоровой долей скептицизма, но всё же, суть явления оно передаёт верно.

Требования к объёму оперативной памяти растут постоянно, причём темпы их роста, пожалуй, превышают требования к центральным процессорам и видеокартам. И ладно, если бы это проявлялось лишь в рабочих задачах, связанных с большими объёмами данных или тяжеловесными исходными файлами: современные игры, чтобы не обращаться постоянно к жёсткому диску, требуют такого объёма памяти, каким пару-тройку лет ранее мог похвастаться не всякий сервер.

Разумеется, в контексте этого пользователи быстро сталкиваются с необходимостью увеличить объём оперативки. И вопросов при этом у пользователя возникает не меньше, чем при выборе процессора или видеокарты.

Давайте рассмотрим, что важно при выборе оперативной памяти, а что - нет.

Часто задаваемые вопросы

Q: Какой объём оперативки сегодня достаточен?

A: Как и в случае с любым другим относительным понятием, всё зависит от ваших потребностей. Тем не менее, и здесь есть некоторые ориентиры.

Так, «золотой стандарт» для домашнего игрового ПК на сегодня – 16 гигабайт оперативной памяти.

Кому-то это может показаться абсурдным, однако факт есть факт: современные игры даже со средними настройками графики могут легко потреблять по 8-9 гигабайт оперативки. С повышением настроек графики и разрешения экрана потребление памяти пропорционально увеличивается, а если вы используете видеокарту с недостаточным объёмом набортной памяти, то на современных платформах она будет использовать под свои нужды часть оперативной памяти.

Потребление памяти в Mass Effect: Andromeda, максимальные настройки, FullHD. GTX 1050 Ti 4gb

Потребление памяти в Watch Dogs 2, максимальные настройки, FullHD. GTX 1050 Ti 4gb

Но это только игры. А ведь также стоит учитывать объем памяти, выделяемый на нужды ОС, антивируса, торрент-клиента и всего прочего софта, работающего в фоновом режиме - забывать об этом тоже не стоит.

Для рабочих станций 16 гигабайт – это лишь начальный уровень. Такого объёма хватит, чтобы одновременно ретушировать фото и верстать книгу или буклет, но вот монтаж продолжительных видеороликов, особенно если речь о разрешениях FullHD и выше, - потребует 32 и более гигабайт памяти.

8 гигабайт – это либо «начальный» вариант, когда при сборке нового ПК объёмом оперативки пожертвовали ради приобретения другого железа, либо вариант для офисного или бюджетного домашнего компьютера, на котором заведомо не планируется запускать тяжеловесные новые игры.

Q: Как лучше набрать нужный объём: двумя, четырьмя или одним модулем?

A: Если говорить в общем – покупать модуль большего объёма всегда выгоднее, чем набирать тот же объём из нескольких модулей.

Причины вполне очевидны: количество слотов под оперативную память ограничено. Их может быть 2, 4, 6 или 8, в зависимости от контроллера памяти в вашем процессоре и ценового сегмента, к которому относится материнская плата.

Приведём простой пример: на материнке всего два слота под оперативную память, и оба заняты модулями по 4 гигабайта. Теперь, чтобы расширить объём оперативки, вам придется заменить имеющиеся модули, купив две новых планки по 8 или по 16 гигабайт.

Естественно, продать оперативную память на вторичном рынке можно: спрос на неё есть всегда. Но к тому времени, как Вам понадобится апгрейд оперативки – он понадобится и другим пользователям, а значит, цены на «маленькие» модули упадут, а на «большие» - наоборот, вырастут. Представьте свои финансовые потери в таком случае, и сравните их с покупкой одного модуля на 8 гигабайт в самом начале и добавлением ещё одного модуля того же объёма впоследствии.

Q: Но что делать, если в продаже нет модуля, аналогичного уже установленному в ПК?

A: Подобрать модуль другой модели и поставить его. Индивидуальная несовместимость планок, конечно, возможна, но на современных платформах встретить её так же вероятно, как увидеть живого единорога, выйдя утром на работу.

В случае установки разных модулей оперативной памяти возможны два сценария:

1) Система запустится автоматически, но на таймингах и частоте самого медленного из модулей. 2) Для запуска системы вам потребуется зайти в биос материнской платы, выставив там одинаковые параметры для всех модулей памяти.

Вот так, например, выглядит работа двух абсолютно разных модулей на платформе socket AM4, мифов про работу памяти на которой ходит ровно столько же, сколько есть каналов на ютубе:

Q: А как вообще определить совместимость оперативки с компьютером? На сайте производителя материнской платы есть список, но этих модулей нет в продаже…

A: Списки совместимости – это всего лишь списки той оперативки, которая была в наличии у производителя, и которую он смог на этой плате запустить. Причём именно запустить в штатном режиме, а не разогнать до предела возможностей.

Естественно, ни один из производителей материнских плат не будет собирать и хранить весь перечень существующих в природе модулей оперативки, да и протестировать такое количество – та ещё задача. Поэтому все «списки совместимости» имеют исключительно рекомендательный, а не ограничительный характер. Отсутствие там конкретной оперативки не значит, что система с ней не заведётся, а присутствие – не означает, что с этими модулями вы сможете достичь рекордных частот и таймингов.

Q: А вот ещё в магазине у процессора написано «2xDDR4-2400 МГц», это значит что с ним можно поставить только два модуля с частотой в 2400 МГц, иначе ничего работать не будет?

A: Нет, не значит.

«2x» здесь означает, что процессор использует двухканальный контроллер памяти, то есть доступ ко всему банку оперативки осуществляется сразу по двум каналам, за счёт чего возрастает скорость операций с памятью. Грубо говоря – представьте себе такой странный заварочный чайник сразу с двумя носиками, наливающий содержимое в две чашки одновременно.

Существуют также трёхканальные (последнее появление в десктопном сегменте – платформа Intel LGA 1366) и чётырёхканальные (LGA 2011, 2011-3, 2066, socket TR4) контроллеры памяти – там, соответственно, у процессоров будет надпись «3xDDR» или «4xDDR».

В любом случае это никак не ограничивает количество слотов оперативки, которое можно занять модулями. С любым процессором можно использовать хоть один, хоть все слоты сразу. А вот активация многоканального режима будет возможна только в том случае, если количество модулей будет кратно числу каналов. В двухканальном будут работать 2 или 4 модуля, в четырёхканальном, соответственно – 4 или 8.

С частотой всё несколько сложнее. Отдельные центральные процессоры действительно не могут работать с частотой выше паспортной, а другим этого не позволяют некоторые чипсеты материнских плат. О таких нюансах мы поговорим ниже в соответствующем разделе.

Q: А я поставил память с частотой в 2400 МГц, а она только на 1200 работает – это память с моей материнкой несовместима?

A: 1200 МГц, умноженные на 2 – это и есть 2400 МГц. Равно как 1600 – это 3200 МГц, а 1733 – это 3466 МГц. И так далее.

Память стандарта DDR - который, на минуточку, расшифровывается как Double Data Rate, - привносит такие понятия, как реальная и эффективная частота. Реальная частота – это то, что мы видим в диагностических утилитах и различном софте для мониторинга параметров системы. И да, она ровно в два раза меньше заявленной в паспорте.

Так выглядит частота оперативки в BIOS

Так она же выглядит в CPU-Z

Однако, DDR как раз и отличает удвоенная скорость передачи данных по сравнению с памятью SDRAM на той же частоте. Иначе говоря, DDR на 100 м даёт такую же скорость, какую выдавала бы SDRAM на частоте в 200 МГц. Отсюда и возникло понятие эффективной частоты, сохраняющееся уже в четвёртом поколении DDR. И, скорее всего, эта традиция не прервётся и в следующих поколениях.

Q: А вот 1066 МГц если на два умножить – всё равно только 2133 получается. Почему так, если заявлено 3000 МГц?

A: Паспортная частота оперативной памяти – понятие тоже двойственное, хотя и несколько в другом смысле.

Заявленные производителем значения могут соответствовать либо XMP-профилю, если таковой у планок присутствует, либо стандарту, присвоенному этим модулям JEDEC.

По умолчанию любой модуль запустится на той частоте, для которой был стандартизирован. Кстати, не обязательно это будет 2133 МГц – есть планки, сертифицированные для работы на 2400 и 2666 МГц. Вероятно, появятся и планки, работающие по умолчанию на 2933 МГц – по крайней мере, процессоры с соответствующим паспортным значением уже вполне себе существуют.

Модули G.Skill SniperX: - Сертификат JEDEC на 2133 МГц; - Профиль XMP на 3400 МГц.

Модули G.Skill FlareX: - Сертификат JEDEC на 2400 МГц; - Профиль XMP на 3200 МГц.

Если же для ваших планок заявлена частота в 3000 МГц – это означает, что производитель записал для них XMP-профиль, то есть набор таймингов, значения частоты и напряжений для автоматического разгона. Активируйте его в BIOS вашей материнской платы – и тогда получите паспортные значения.

Если же XMP-профиля у планок нет – такое часто встречается у OEM-планок, не относящихся к «именным» сериям, а также просто у бюджетных моделей – разогнать и/или подобрать более интересные тайминги можно вручную. Об этом поговорим ниже.

На что нужно обратить внимание при выборе оперативной памяти?

Вид модуля памяти

В каталоге ДНС модули оперативки разделены на три типа: оперативная память DIMM, оперативная память SO-DIMM и серверная оперативная память.

Оперативная память SO-DIMM

Оперативная память DIMM

Серверная оперативная память с поддержкой ECC

SO-DIMM – это память компактного формата, применяемая в ноутбуках, части моноблоков и материнских плат формата mini-ITX и ещё более маленьких nano-ITX и pico-ITX. Как нетрудно догадаться, эту память отличают меньшие размеры по сравнению с десктопной DIMM, и меньшее количество контактов. Это делает их механически несовместимыми, так что установить память для десктопного ПК в ноутбук невозможно, хотя других различий между DIMM и SO-DIMM нет.

DIMM – это тот формат, который чаще всего имеется ввиду, когда речь заходит об оперативной памяти. Собственно, в десктопных ПК, а также части моноблоков применяется именно такая память.

Серверная оперативная память по своим габаритам не отличается от сородичей, предназначенных для персональных компьютеров, но вот установить её в обычный десктоп чаще всего нельзя. Серверная память поддерживает коррекцию ошибок ECC, с которой большинство контроллеров памяти десктопных ЦПУ попросту не работает, а также может быть выполнена регистровой («буферизированной»). В последнем случае в конструкции модуля памяти присутствует, собственно, регистр – устройство, за счёт которого снижается нагрузка на контроллер памяти, а на один канал становится возможным устанавливать большее количество модулей памяти.

Нельзя сказать, что серверную память всегда нельзя запустить в составе обычного ПК, но всегда можно использовать в составе серверов. К примеру, десктопные процессоры AMD Ryzen поддерживают небуферизированную память с коррекцией ошибок, а, например, серверные процессоры Intel Xeon серии E3-12** под сокет LGA 1155 – не могут работать с регистровой памятью. Однако в любом случае смысла в использовании серверной памяти в обычном ПК нет.

Тип модуля памяти

Память стандарта SDRAM сегодня обнаружить в свободной продаже практически невозможно, а вот DDR – в любом из пяти (или, если угодно, четырёх с половиной) существующих поколений.

При этом необходимо понимать, что разные поколения несовместимы между собой как механически, так и по электрическим параметрам. В слот, предназначенный для оперативки DDR, можно установить только модуль стандарта DDR, в слот для DDR2 – только модуль DDR2, и так далее.

Несколько выбивается из общего принципа оперативка стандарта DDR3L. Будучи всего лишь энергоэффективной версией DDR3, она зачастую способна работать в материнских платах, поддерживающих предыдущее поколение оперативки.

А вот обратное, увы, не так просто. Механически установить модуль DDR3 в слот DDR3L возможно, однако не факт, что он окажется работоспособен при пониженном напряжении. Работа же на повышенном (в сравнении с DDR3L) напряжении в долгосрочной перспективе может повредить контроллер памяти.

Память стандарта DDR4 же может работать только в предназначенных для неё слотах. Ни физически, ни электрически она несовместима с другими поколениями. При том, на всех современных платформах, начиная с LGA 2011-3, используется только эта оперативная память.

Частота оперативной памяти

На самом деле, этот параметр влияет в большей степени на цену модуля оперативки, нежели на его реальные эксплуатационные характеристики. Поэтому о частоте оперативки можно говорить только в контексте.

Имеет ли смысл обращать внимание на максимальную частоту памяти, которую поддерживает процессор?

Только в отдельных случаях. Например, APU и процессоры AMD поколения Bristol Ridge в силу особенностей контроллера памяти, попросту неспособны стабильно работать с памятью на частоте выше 2400 МГц. А процессоры Intel Core i3 и Core i5 поколения Coffee Lake, установленные в материнские платы с чипсетами h410, B360 и h470 – не могут превысить паспортную частоту из-за ограничений чипсетов.

В этих и ряде других случаев просто бессмысленно покупать скоростную память: деньги-то вы заплатите, но никаких преимуществ не получите.

Но не стоит и в обязательном порядке приобретать память, соответствующую максимальной паспортной частоте контроллера. Даже на бюджетных материнских платах под Coffee Lake доступен разгон оперативки – просто предел этого разгона ограничен 2400 или 2666 МГц.

MSI B360 Mortar Илья Муромец, настройки памяти

Asus ROG STRIX B360 Gaming, настройки памяти

Gigabyte h470 Aorus Gaming 3 WiFi, настройки памяти

В чём тут соль? Да в том, что 2400 и даже 2666 МГц возьмут абсолютно любые планки DDR4, даже если они собраны на двухранговых чипах Micron или Hynix ревизии A-die – то есть, наихудшие варианты для разгона. Более того – в подавляющем большинстве случаев для разгона с 2133 до 2666 МГц не нужно будет даже изменять тайминги и напряжение!

Следовательно, и переплачивать за память с XMP-профилем на 2666 МГц смысла немного: работать она будет не лучше более дешёвых вариантов – разве что процедура разгона упростится до нажатия одной кнопки в биосе. Вместо двух.

Частота памяти условно важна для разгоняемых десктопных платформ Intel – материнских плат с чипсетом Z270 под сокет LGA 1151 и Z370 с грядущим Z390 под LGA 1151_v2.

Почему "условно"? Во-первых, прирост от разгона памяти здесь не так значителен, и по сути им можно пренебречь. Во-вторых, на этих платформах любая память гонится до значений выше 3 ГГц: модули на двухранговых чипах Micron могут разогнаться до 3300 МГц, одноранговые Micron и Hynix A-die возьмут и 3733 МГц.

Иначе говоря, даже худшие варианты для разгона продемонстрируют неплохие результаты. Лучшие же – одноранговые чипы Samsung – в абсолютно домашних условиях способны разогнаться до 4000-4200 МГц, и это даже близко не будет считаться рекордом.

Для платформы AMD socket AM4 частота оперативной памяти имеет куда большее значение, поскольку её повышение приводит к существенному росту производительности во всех задачах, включая работу и игры. В отдельных случаях прирост от разгона с 2400 до 3200 МГц может составлять 20% и более – а это, согласитесь, не то, чем можно пренебречь.

Однако тут необходимо иметь ввиду, что частота работы памяти на АМ4 не имеет ничего общего с паспортными значениями модулей. И зависит она в первую очередь от чипов, на которых эти модули собраны, а во-вторую – от версии agesa.

На практике это приводит к тому, что пафосный и дорогой комплект оперативки с радиаторами и подсветкой, но собранный зачем-то на чипах Micron, отказывается разгоняться выше 3066 МГц, даже если с завода предусмотрен XMP-профиль на 3200 МГц и выше. В то же время дешёвые OEM-модули Samsung, не имеющие ни радиаторов, ни профиля XMP, разгоняются минимум до 3466 МГц, тем самым неимоверно радуя владельца.

В каком же случае покупка скоростной памяти оправдана? Разумеется, в случае рабочих станций на топовых платформах: LGA 2011-3, LGA 2066 и socket AM4.

Здесь, приобретая память с частотой выше 3000 МГц, вы платите не за автоматический разгон через XMP – вы платите за гарантированную работоспособность памяти на заявленных частотах. Для ПК, выполняющих серьёзные рабочие задачи, это крайне важно, поскольку потеря данных в результате неудачного разгона может привести к убыткам, во много раз превышающим разницу в цене между «дешёвой» и «дорогой» памятью.

Тайминги

А вот этот параметр уже более важен, нежели паспортная частота. Как и частоту, тайминги можно менять на практически любых платформах, однако при выборе оперативной памяти они могут служить своего рода ориентиром, косвенно указывающим на возможности разгона того или иного модуля.

Что такое тайминги вообще?

Исходя из названия – это задержка, происходящая между отправкой команды контроллером памяти и её выполнением. Правда, эта задержка измеряется не в единицах времени, а в тактах шины памяти. Но тем не менее – понятно, что чем она меньше, тем быстрее выполняются операции с памятью.

Причем же здесь разгон? При том, что частота и тайминги оперативной памяти находятся на разных чашах весов – или, если угодно, разных сторонах качелей. При увеличении частоты рано или поздно наступает момент, когда тайминги приходится поднимать – иначе дальнейший разгон становится невозможен или система теряет стабильность.

Например, если память работает на частоте в 2133 МГц с таймингами, соответствующими формуле 13-15-15-28, то на условной частоте в 3000 МГц она может оказаться стабильной только при повышении таймингов до 15-17-17-32. Но шансов оказаться работоспособной на этой частоте у неё будет больше, чем у памяти, которая изначально работала на 2133 МГц с формулой 14-16-16-31.

Таймингов, на самом деле, у памяти гораздо больше, но первостепенное значение имеют лишь несколько из них. Собственно, формула 13-15-15-28 описывает следующие из них:

- CAS Latency – время рабочего цикла, задержка между подачей команды от контроллера памяти и подачей сигнала CAS

- RAS to CAS Delay – время полного доступа к данным, то есть поиска нужного столбца и строки в двухмерной таблице

- RAS Precharge – время перехода от одной строки в таблице к другой.

- tRAS – задержка между командой активации доступа и командой закрытия строки.

Изредка указывается также параметр CR (Command Rate), определяющий минимальное время между подачей любых двух команд. Он не имеет серьёзного влияния на производительность, но его повышение в отдельных случаях может поднять потолок разгона памяти или улучшить стабильность на высоких частотах.

Радиатор и подсветка

Оперативная память – далеко не самый греющийся элемент системного блока. По сравнению с процессорами и видеокартами её вклад в глобальное потепление в масштабах локального помещения можно назвать незначительным, особенно если говорить о работе при штатном напряжении.

Однако, если вы планируете разгон с повышением напряжения – лучше обратите внимание на память, оснащённую радиаторами. 1,35 вольта для «незащищённых» чипов DDR4 ещё не опасно, а вот 1,38-1,4 вольта и выше – уже приведут к серьёзному росту тепловыделения.

У радиаторов, правда, есть и другая сторона: они увеличивают высоту модуля, и могут помешать установке процессорных кулеров некоторых типов. Если вы используете массивный кулер, нависающий над одним или двумя слотами оперативной памяти – лучше заранее измерьте расстояние между его нижней гранью и слотом для оперативки. Как правило, память высотой до 40 мм больших проблем не вызывает, но это тот случай, когда лучше знать заранее.

Наличие подсветки – вопрос уже исключительно личных предпочтений, поскольку ни на производительность, ни на совместимость она не влияет. Хотите модули с подсветкой – выбирайте их. Не хотите модули с подсветкой – знайте, что чаще всего её можно отключить, и просто так отказываться от подходящих вам по прочим параметрам планок не стоит.

Критерии и варианты выбора:

Если вы планируете апгрейд офисного или бюджетного домашнего ПК, на котором не планируется решать сколь-нибудь серьёзные задачи – ограничьтесь модулями объёмом в 4 гигабайта. Тип памяти – DDR3L или DDR4 – зависит от того, под какую память предназначена ваша материнская плата.

В этом случае желательно, чтобы итоговый объём оперативки составлял 8 гигабайт – этого более чем достаточно для лёгких повседневных задач. Поэтому, в зависимости от количества и объёма ранее установленных в ПК модулей, выбирайте или набор из двух планок по 8 гигабайта, или один отдельный модуль.

Тайминги и частота в данном случае решающего значения не имеют – разве что для собственного спокойствия вы можете выбрать память, максимально соответствующую ранее установленной.

Если вы собираете новый игровой ПК, но бюджет на покупку ограничен – обратите внимание на одиночные модули DDR4 объёмом в 8 гигабайт. Да, поначалу вы потеряете немного производительности из-за одноканального режима, но впоследствии добавить ещё один модуль на 8 гигабайт будет проще и дешевле, чем перепродавать два модуля на 4 гигабайта.

Обращать снимание на тайминги в этом случае также не обязательно: важнее будет экономия, а поднять частоту и понизить тайминги можно и вручную. А вот в случае со сборкой ПК на платформе АМ4 экономить нужно будет с умом: без чтения FAQ и выбора памяти на нужных чипах не обойтись.

Для сборки игрового ПК на платформе Intel LGA 1151_v2 нужен будет комплект из двух модулей по 8 или сразу по 16 гигабайт – в зависимости от вашего бюджета. При этом, выбираете ли вы платформу с разгоном или без него – особого смысла в выборе высокочастотной памяти нет, но стоит присмотреть модули на 2400-3000 МГц с более низкими таймингами. Они вполне могут дать лучший результат в дальнейшем разгоне. Ну, или чуть более высокую производительность на фиксированной частоте в 2666 МГц.

Для сборки игрового ПК на платформе AMD socket AM4 нужен будет аналогичный комплект из двух модулей. Базовая частота и тайминги значения не имеют от слова «совсем», а вот используемые чипы – очень даже. Одноранговые Samsung B-die – не обязательны, но крайне желательны к покупке. Одноранговые C-die покажут чуть менее высокий, но всё же неплохой результат: вполне можно достичь 3333 МГц. Двухранговые D- и E-die, одноранговые Hynix MFR позволят достичь 3200 МГц, что тоже вполне неплохо.

В том случае, если память выбирается для рабочих станций, и используемые вами приложения действительно получают хороший прирост от высокочастотной памяти – выбирайте наборы на 32 и более гигабайт с низкими таймингами и частотой от 2933 до 3600 МГц. Разгон вручную, разумеется, возможен и на этих платформах, но пользоваться им не стоит. Профиль XMP, как правило, гарантирует стабильность на заявленных частотах, но вот при ручном разгоне абсолютно уверенным в этом быть нельзя. А потеря данных из-за случайного сбоя может иметь катастрофические последствия.

Что такое оперативная память компьютера?

Снова привет! Сегодня речь пойдет об оперативной памяти. Разберемся с тем: что такое оперативная память, для чего она нужна и как работает. Также расскажу какие виды оперативной памяти есть и на какие характеристики стоит обращать внимание при ее выборе. Будет позновательно и интересно. Начнем.

Что такое оперативная память?

Оперативная память — она же RAM (Random Access Memory), ОЗУ (оперативное запоминающее устройство), оперативка — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором.

Физически модуль оперативной памяти воплощен в виде таких планок, которые вставляются в специальный разъем на материнской плате:

Так, в принципе, на первые два вопроса я ответил. Хотя нет, с этого определения обычному человеку мало что понятно. Разберем подробнее.

В компьютере есть несколько видов памяти: энергоНЕзависимая и энергозависимая или временная.

Энергонезависимая память представляет из себя любое устройство памяти, которое может хранить данные независимо от того подается на него питание или нет. В компьютере таковым является жесткий диск или SSD. Вы можете сохранить на нем файл, отключить компьютер от сети и при следующем включении все останется на месте.

Энергозависимая память — это компьютерная память, которой для хранения информации необходимо постоянное питание. Таковой памятью в компьютере и является оперативная. Это означает, что если перестать подавать на нее электропитание (выключить компьютер), вся хранящаяся в ней информация исчезнет. То бишь каждый раз, когда вы включаете компьютер, его оперативная память пуста.

Думаю, это понятно. Вторая часть определения отвечает на следующий вопрос.

Для чего нужна оперативная память?

Справедливым будет вопрос: зачем в компьютере кроме жесткого диска, на котором данные сохраняются независимо от того подается на него питание или нет, нужна еще дополнительная, столь ненадежная вещь как оперативная память?

Дело в том, что в сравнении со скоростью работы центрального процессора, скорость чтения и записи на жесткий диск очень маленькая. Если бы процессор напрямую работал с ним, производительность компьютера была бы очень низкой.

Оперативная память, по сравнению с жестким диском работает намного быстрее. Если не учитывать различные кэши, ОЗУ будет самым быстрым элементом в устройстве компьютера, после центрального процессора.

Таким образом, оперативная память нужна для увеличения производительности компьютера, за счет того, что дает возможность последнему быстрее получать необходимые данные.

Как это все работает?

При запуске компьютера, все необходимые данные (ядро операционной системы, драйвера, различные службы и программы автозапуска) загружаются из жесткого диска в оперативную память откуда ЦП и берет их на обработку. Результаты своей работы процессор также возвращает в оперативную память, а не на жесткий диск. Каждая программа, каждое открытое вами окно любой программы на компьютере находится в оперативной памяти. С ней центральный процессор и работает. И только тогда, когда вы сохраняете какие-то результаты своей работы, они записываются на жесткий диск.

Для лучшего понимания рассмотрим простой пример с созданием текстового документа в Word.

При нажатии на ярлык запуска программы, все файлы необходимые для ее работы загружаются в оперативную память после чего появляется окно редактора на мониторе компьютера. Когда вы начинаете писать текст он тоже находится в оперативной памяти, просто так на жестком диске вы его не найдете. Чтобы сохранить на нем результат вашей работы, необходимо нажать одноименную кнопку в Word. У всех хотя бы раз было такое, что вы пишете, пишете какой-нибудь текст и случайно закрываете программу или компьютер выключился, а после повторного включения, ваша работа исчезает. Это происходит именно потому, что оперативная память обнулилась, а вы ниразу не удосужились сохранить свое творчество.

Думаю, теперь вы понимаете, что такое оперативная память, зачем она нужна и как это работает. Давайте перейдем к более практичным вещам. А именно — рассмотрим виды оперативной памяти и основные ее характеристики.

Виды (типы) оперативной памяти

В наше время оперативная память может быть двух типов: статической (SRAM) и динамической (DRAM). Статические ОЗУ по сравнению с динамическими являются более быстрыми из-за своей технологии производства, но в то же время и более дорогими. Такой тип зачастую используется в качестве кэш-памяти процессора. Для массового производства модулей оперативной памяти используют технологию DRAM. Существует несколько типов такой памяти. Те, которые сейчас можно встретить:

  • DDR SDRAM — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных (Double Data Rate Synchronous Dynamic Random Access Memory) первого поколения;
  • DDR2 SDRAM — второе поколение DDR SDRAM;
  • DDR3 SDRAM — третье поколение DDR SDRAM;
  • DDR4 SDRAM — четвертое поколение DDR SDRAM;
  • DDR5 SDRAM — пятое поколение DDR SDRAM;

Как можно догадаться, DDR SDRAM — самый старый тип оперативной памяти, который сейчас встретить очень трудно. DDR5 — самый новый, который в продаже пока отсутствует, но уже выпущены тестовые образцы. На сегодняшний день самым распространенным является DDR4. Различаются эти типы памяти между собой производительностью и внешним видом.

Чтобы ненароком нельзя было вставить планку с одним типом оперативной памяти в разъем, предназначенный для другого, в группе контактов есть специальный ключ (пропил), а в разъеме на материнской плате в том же месте выступ. У каждого вида памяти он разный.

Кроме того, с помощью этого ключа вы не сможете вставить модуль ОЗУ наоборот.

Основные характеристики оперативной памяти

  • Тип оперативной памяти. DDR3 или DDR4. Первый и второй тип в новых устройствах уже не встречается, а пятый — еще.
  • Объем ОЗУ. Как писалось выше — в оперативную память будут помещаться все запущенные программы. Соответственно, чем больше и чем более ресурсоемкое ПО будет использоваться на ПК, тем больший объем оперативки необходим. Как небольшой ориентир: простому домашнему или офисному компьютеру достаточно 4 Гб. Для домашнего мультимедийного можно устанавливить 8 Гб памяти. А игровой или профессиональной машине с «тяжелыми» программами по типу видеоредакторов для комфортной работы необходимо 16 и больше Гб оперативной памяти.
  • Тактовая частота. Но нужно смотреть чтобы эту частоту поддерживали материнская плата и процессор. Иначе, если частота ОЗУ будет больше, чем поддерживаемая материнкой, память будет работать на пониженных частотах что для будет означать переплату за неиспользуемую производительность.
  • Тайминги. Это задержка между обращением к памяти и до момента выдачи ею нужных данных. Соответственно, чем меньше будут задержки, тем быстрее ОЗУ будет работать.

Итог

На этом и закончу. Я постарался изложить основную информацию по оперативной памяти компьютера, которой будет достаточно обычному пользователю для понимания того, что такое оперативная память, для чего она нужна и как работает, основные ее характеристики. В комментариях вы можете задать мне вопросы если вам что то не понятно.

Предыдущая запись
Что такое кэш браузера и как его очистить? Следующая запись
Как сделать подпись с картинкой в Thunderbird

 

Метки ЖелезоКомпьютер

Что такое ОЗУ, какой тип памяти в вашем компьютере

Очень много пользователей компьютера часто задаются вопросом — что такое ОЗУ. Чтобы помочь нашим читателям подробно разобраться с ОЗУ, мы подготовили материал, в котором подробно рассмотрим, где его можно использовать и какие его типы сейчас используются. Также мы рассмотрим немного теории, после чего вы поймете, что собой представляет современная память.

Немного теории

Аббревиатура ОЗУ расшифровывается как — оперативное запоминающее устройство. По сути, это оперативная память, которая в основном используется в ваших компьютерах. Принцип работы любого типа ОЗУ построен на хранении информации в специальных электронных ячейках. Каждая из ячеек имеет размер в 1 байт, то есть в ней можно хранить восемь бит информации. К каждой электронной ячейке прикрепляется специальный адрес. Этот адрес нужен для того, чтобы можно было обращаться к определенной электронной ячейке, считывать и записывать ее содержимое.

Также считывание и запись в электронную ячейку должна осуществляться в любой момент времени. В английском варианте ОЗУ — это RAM. Если мы расшифруем аббревиатуру RAM (Random Access Memory) — память произвольного доступа, то становится ясно, почему считывание и запись в ячейку осуществляется в любой момент времени.

Информация хранится и перезаписывается в электронных ячейках только тогда, когда ваш ПК работает, после его выключения вся информация, которая находится в ОЗУ, стирается. Совокупность электронных ячеек в современной оперативке может достигать объема от 1 ГБ до 32 ГБ. Типы ОЗУ, которые сейчас используются, носят название DRAM и SRAM.

  • Первая, DRAM представляет собой динамическую оперативную память, которая состоит из конденсаторов и транзисторов. Хранение информации в DRAM обусловлено наличием или отсутствием заряда на конденсаторе (1 бит информации), который образуется на полупроводниковом кристалле. Для сохранения информации этот вид памяти требует регенерации. Поэтому это медленная и дешевая память.
  • Вторая, SRAM представляет собой ОЗУ статического типа. Принцип доступа к ячейкам в SRAM основан на статическом триггере, который включает в себя несколько транзисторов. SRAM является дорогой памятью, поэтому используется, в основном, в микроконтроллерах и интегральных микросхемах, в которых объем памяти невелик. Это быстрая память, не требующая регенерации.

Классификация и виды SDRAM в современных компьютерах

Наиболее распространенным подвидом памяти DRAM является синхронная память SDRAM. Первым подтипом памяти SDRAM является DDR SDRAM. Модули оперативной памяти DDR SDRAM появились в конце 1990-х. В то время были популярны компьютеры на базе процессов Pentium. На изображении ниже показана планка формата DDR PC-3200 SODIMM на 512 мегабайт от фирмы GOODRAM.

Приставка SODIMM означает, что память предназначена для ноутбука. В 2003 году на смену DDR SDRAM пришла DDR2 SDRAM. Эта память использовалась в современных компьютерах того времени вплоть до 2010 года, пока ее не вытеснила память следующего поколения. На изображении ниже показана планка формата DDR2 PC2-6400 на 2 гигабайта от фирмы GOODRAM. Каждое поколение памяти демонстрирует все большую скорость обмена данными.

На смену формата DDR2 SDRAM в 2007 году пришел еще более быстрый DDR3 SDRAM. Этот формат по сегодняшний день остается самым популярным, хоть и в спину ему дышит новый формат. Формат DDR3 SDRAM сейчас применяется не только в современных компьютерах, но также в смартфонах, планшетных ПК и бюджетных видеокартах. Также память DDR3 SDRAM используется в игровой приставке Xbox One восьмого поколения от Microsoft. В этой приставке используется 8 гигабайт ОЗУ формата DDR3 SDRAM. На изображении ниже показана память формата DDR3 PC3-10600 на 4 гигабайта от фирмы GOODRAM.

В ближайшее время тип памяти DDR3 SDRAM заменит новый тип DDR4 SDRAM. После чего DDR3 SDRAM ждет судьба прошлых поколений. Массовый выпуск памяти DDR4 SDRAM начался во втором квартале 2014 года, и она уже используется на материнских платах с процессорным разъемом Socket 1151. На изображении ниже показана планка формата DDR4 PC4-17000 на 4 гигабайта от фирмы GOODRAM.

 

Пропускная способность DDR4 SDRAM может достигать 25 600 Мб/c.

Как определить тип оперативки в компьютере

Определить тип оперативной памяти, которая находится в ноутбуке или в стационарном компьютере можно очень легко, используя утилиту CPU-Z. Эта утилита является абсолютно бесплатной. Загрузить CPU-Z можно с ее официального сайта www.cpuid.com. После загрузки и установки, откройте утилиту и перейдите ко вкладке «SPD». На изображении ниже показано окно утилиты с открытой вкладкой «SPD».

В этом окне видно, что в компьютере, на котором открыта утилита, установлена оперативная память типа DDR3 PC3-12800 на 4 гигабайта от компании Kingston. Таким же образом можно определить тип памяти и ее свойства на любом компьютере. Например, ниже изображено окно CPU-Z с ОЗУ DDR2 PC2-5300 на 512 ГБ от компании Samsung.

А в этом окне изображено окно CPU-Z с ОЗУ DDR4 PC4-21300 на 4 ГБ от компании ADATA Technology.

Данный способ проверки просто незаменим в ситуации, когда нужно проверить на совместимость память, которую вы собираетесь приобрести для расширения ОЗУ вашего ПК.

Подбираем оперативку для нового системника

Чтобы подобрать оперативную память к определенной компьютерной конфигурации, мы опишем ниже пример, из которого видно как легко можно подобрать ОЗУ к любой конфигурации ПК. Для примера мы возьмем такую новейшую конфигурацию на базе процессора Intel:

  • Процессор — Intel Core i7-6700K;
  • Материнская плата — ASRock h210M-HDS на чипсете Intel Н110;
  • Видеокарта — GIGABYTE GeForce GTX 980 Ti 6 ГБ GDDR5;
  • SSD — Kingston SSDNow KC400 на 1000 ГБ;
  • Блок питания — Chieftec A-135 APS-1000C мощностью 1000 Вт.

Чтобы подобрать оперативку для такой конфигурации, нужно перейти на официальную страницу материнской платы ASRock h210M-HDS — www.asrock.com/mb/Intel/h210M-HDS.

На странице можно найти строку «Supports DDR4 2133», которая гласит, что для материнской платы подходит оперативка с частотой 2133 MHz. Теперь перейдем в пункт меню «Specifications» на этой странице.

Оперативная память компьютера. Простыми словами

В этой статье я расскажу об оперативной памяти ПК, кто ещё не знает, что это такое обязательно расскажу. Проведем сравнение её с обычной памятью, выявим разницу и поговорим о принципах работы.

Так же научимся правильно подбирать оперативную память для своего компьютера, подскажу, сколько её нужно добавить для нужного результата.

Что такое оперативная память компьютера?

Итак, оперативная память – это временная память компьютера.

То есть если говорить простым языком – это устройство, которое записывает временные файлы, данные, которые вы вводите здесь и сейчас.

Вы когда-нибудь задумывались, где сохраняется текст, который вы, к примеру, только что ввели в worde или блокноте? Если попробуете найти этот текст до того, как нажали кнопку «сохранить», его нельзя будет нигде обнаружить, потому что его пока ещё как бы не существует, но ведь вы его видите, вот он перед вами на экране, а не найдете вы его именно потому что, он сохраняется именно во временной памяти – оперативной памяти.

Принцип работы этой памяти достаточно прост, она варьируется, как только вы нажали включения компьютера и тут же пошли записи всех посещенных вами мест, папок на ПК, можете иногда заметить что при первом открытии папки или файла это занимает некоторое время, а при повторном нажатии папка открывается моментально, ну или на порядок быстрее, потому что это действие было временно сохранено на оперативную память. Поэтому чем больше объем такой памяти, тем лучше. Но как только вы выключили компьютер, временная память очищается безвозвратно. А обычная память компьютера, которая расположена на жестком диске, как вам уже известно, никуда не девается, пока вы сами ее не очистите в этом их ключевая особенность отсюда и понятие – временная память.

Таким образом, так называемая оперативка хранит в себе все временные файлы и процессы с которыми в данный момент работает процессор. Тем самым снижая нагрузку с процессора не затрачивая его ресурсы на обработку одной и той же операции – этот процесс и будет ускорением вашего компьютера.

Обозначаться оперативная память может несколькими аббревиатурами:

ОЗУ – оперативное запоминающее устройство

RAM – Random Access Memory.

А фактически – это небольшая плата с микрочипами, которая подключена к материнской плате внутри вашего компьютера.

Я не буду забивать вам голову подробными техническими характеристиками, а расскажу о том, что вам нужно понимать для обыденного пользователя.

А знать вам для этого достаточно тип поддерживаемой оперативной памяти и ее объем.

На данный момент достаточно знать два типа оперативки: DDR2 и DDR3.

Формат DDR2 вы сможете встретить, если захотите апгрейдить старый компьютер, потому что новые ПК оснащены форматами планок DDR3.

Число слотов под такие платы внутри компьютера будет варьироваться в среднем от 2 до 8 в зависимости от модели материнской платы.

Кроме типа оперативки нужно обязательно знать о ее объеме памяти. Измеряется этот объем в Гб (гигабайтах) (в современных компьютерах), раньше были не такие большие объемы и измерялись в Мб (мегабайтах).

Стандартные значения планок 1Гб, 2Гб, 4 Гб, 8 Гб, естественно, чем больше, тем лучше.

Хоть сборкой таких плат и занимается не малое количество производителей, они имеют одинаковые размеры.

Как проверить, сколько оперативной памяти в моем компьютере?

Чтобы посмотреть, сколько памяти стоит на вашем ПК достаточно нажать правой кнопкой мышки на значок «мой компьютер» и выбрать в выпадающем меню раздел свойства. Перед вами откроется окно в котором вы найдете строчку: Установленная память (ОЗУ) – напротив, будет указан объем.

Так же можно установить на компьютер одну из программ Everest или CPU-Z , запустив их можно узнать практически все данные об установленном «железе»

Если вы все-таки решили приобрести дополнительный объем памяти для своего компьютера, то рекомендую просто разобрать системный блок, снять старую планку или несколько, пойти с ними в магазин, где можно приобрести компьютер, там же, скорее всего, продаются и такие детали для них, дать продавцу и сказать, что нужна такая же, но большего объема.

Либо можно забить в интернете модель своей материнской платы (указан при покупке ПК) и посмотреть совместимые модели планок оперативки, но будьте готовы, что вам придется читать еще и о тактовой частоте (не рекомендую этот вариант)

При появлении дополнительных вопросов пищите в комментариях, будем разбираться вместе.

Загрузка...

Оперативная память - Простая английская Википедия, бесплатная энциклопедия

Эта статья не имеет источников . Вы можете помочь Википедии, найдя хорошие источники и добавив их. (август 2012 г.)
Накопитель оперативной памяти DDR3 для ноутбуков

Оперативная память (или просто RAM ) - это память или хранилище информации в компьютере, которое используется для хранения запущенных программ и данных для программ.Данные (информация) в ОЗУ можно быстро читать и записывать в любом порядке. Обычно оперативная память представляет собой компьютерные микросхемы. Обычно содержимое ОЗУ доступно быстрее, чем другие типы хранилищ информации, но теряется каждый раз при выключении компьютера. Энергонезависимая память с произвольным доступом (NVRAM) хранит данные без использования электроэнергии, что дороже, но работает медленнее, поэтому используется в меньших количествах.

С конца 20 века в оперативной памяти для хранения данных используются транзисторы, обычно полевые МОП-транзисторы.До этого магнитная память была обычной.

Динамическая память с произвольным доступом (DRAM) используется в большинстве компьютеров. Современные компьютеры используют несколько типов DRAM. До 2002 года большинство компьютеров использовали ОЗУ с одинарной скоростью передачи данных (SDR). Большинство компьютеров, выпущенных с тех пор, используют оперативную память DDR2, DDR3 или DDR4 с двойной скоростью передачи данных. Более поздние типы позволяют перемещать и использовать сохраненные данные более быстро, чтобы процессор компьютера мог продолжать работать быстро, не дожидаясь данных так долго или так часто.

Различные типы ОЗУ обычно не могут работать вместе на одном компьютере. Большинство компьютеров могут использовать только один вид оперативной памяти. Некоторые могут использовать небольшое количество разных видов. Различные типы RAM часто имеют разъемы разной формы. Это ограничивает, какие микросхемы ОЗУ может использовать конкретная модель компьютера.

Статической ОЗУ (SRAM) требуется питание для хранения данных, но не требуется, чтобы компьютер был активен. Некоторые микросхемы SRAM имеют батарейное питание. Этот тип имеет встроенную батарею, чтобы гарантировать, что никакие данные не будут потеряны, если компьютер выключен.Некоторые компьютеры имеют немного SRAM и в основном DRAM.

RAM обычно используется для хранения информации о запущенных программах внутри компьютеров. RAM также может использоваться для разных целей.

Виртуальная память [изменение | изменить источник]

Используя виртуальную память, компьютер может объединить постоянное хранилище с ОЗУ для создания большего пула хранилища. Это полезно, когда в ОЗУ не хватает места для хранения информации. Затем дополнительные данные помещаются в постоянное хранилище вместо ОЗУ.У метода есть ограничение, которое заключается в том, что постоянное хранилище часто работает медленнее, чем ОЗУ, что может замедлить работу компьютера.

RAM-диск [изменение | изменить источник]

Компьютер может использовать часть оперативной памяти для хранения постоянных файлов. Это называется RAM-диск. Когда компьютер включен, файлы копируются на RAM-диск. Это позволяет файлам открываться быстрее, потому что оперативная память работает быстрее, чем постоянное хранилище. Когда компьютер выключен, информация на RAM-диске теряется, поэтому файлы также должны находиться в постоянном хранилище.

Информация, которая всегда нужна компьютеру, которая не может быть изменена или удалена (если это не EEPROM), обычно хранится в постоянном запоминающем устройстве (ROM), которое не теряет своего содержимого при выключении компьютера. К таким элементам относится BIOS (базовая система ввода / вывода), в которой хранятся самые основные команды для компьютера, указывающие, как он должен запускаться. BIOS также сообщает компьютеру, как вводить и выводить информацию. BIOS можно сравнить с частью вашего мозга, которая говорит вашему сердцу, как биться.Это важная часть.

.

Как работает RAM | HowStuffWorks

Оперативная память (RAM) - самая известная форма компьютерной памяти. ОЗУ считается «произвольным доступом», потому что вы можете получить доступ к любой ячейке памяти напрямую, если знаете строку и столбец, которые пересекаются в этой ячейке.

Противоположностью ОЗУ является память с последовательным доступом (SAM). SAM хранит данные в виде серии ячеек памяти, доступ к которым возможен только последовательно (как кассета). Если данных нет в текущем месте, каждая ячейка памяти проверяется, пока не будут найдены необходимые данные.SAM очень хорошо работает с памятью и буферами , где данные обычно хранятся в том порядке, в котором они будут использоваться (хорошим примером является память буфера текстуры на видеокарте). С другой стороны, к данным RAM можно обращаться в любом порядке.

Подобно микропроцессору, микросхема памяти представляет собой интегральную схему (IC), состоящую из миллионов транзисторов и конденсаторов. В наиболее распространенной форме компьютерной памяти динамическая память с произвольным доступом (DRAM), транзистор и конденсатор объединены в пару для создания ячейки памяти , которая представляет один бит данных.Конденсатор хранит бит информации - 0 или 1 (информацию о битах см. В разделе Как работают биты и байты). Транзистор действует как переключатель, который позволяет схеме управления на микросхеме памяти считывать конденсатор или изменять его состояние.

Конденсатор похож на небольшое ведро, в котором могут храниться электроны. Чтобы сохранить 1 в ячейке памяти, ведро заполняется электронами. Чтобы сохранить 0, он опустошается. Проблема с ведром конденсатора в том, что в нем течь. В течение нескольких миллисекунд полное ведро становится пустым.Следовательно, для того, чтобы динамическая память работала, либо ЦП, либо контроллер памяти должен прийти и перезарядить все конденсаторы, содержащие 1, прежде чем они разрядятся. Для этого контроллер памяти считывает память, а затем записывает ее обратно. Эта операция обновления происходит автоматически тысячи раз в секунду.

Этот контент несовместим с этим устройством.

Конденсатор в ячейке динамической памяти RAM похож на дырявое ведро.Его необходимо периодически обновлять, иначе он сбросится до 0. Эта операция обновления - это то место, где динамическое ОЗУ получает свое имя. Динамическая ОЗУ должна постоянно обновляться динамически, иначе она забывает, что в ней хранится. Обратной стороной всего этого обновления является то, что оно требует времени и замедляет память.

Из этой статьи вы узнаете все о том, что такое ОЗУ, какой тип нужно купить и как его установить. См. Следующую страницу, чтобы узнать больше о динамической RAM и ячейках памяти.

.

Компьютерная память с ее типами

Компьютерная память

Область, в которой инструкции программы и данные сохраняются для обработки, называется памятью, как человеческий мозг, компьютер. также требует некоторого места для хранения данных и инструкций по их обработке.

CPU не имеет возможности постоянно хранить программы или большой набор данных. Он содержит только базовую инструкцию необходимо для работы с компьютером. Поэтому требуется память.

Типы компьютерной памяти

Воспоминания в основном бывают двух типов, как указано здесь:

  1. Внутренняя память
    • Оперативная память (RAM)
      • Статическая RAM (SRAM)
      • Динамическое ОЗУ (DRAM)
    • Постоянное запоминающее устройство (ПЗУ)
      • Маскированная постоянная память для чтения (MROM)
      • Программируемая постоянная память (PROM)
      • Стираемое и программируемое постоянное запоминающее устройство (EPROM)
      • Электрически стираемая и программируемая постоянная память (EEPROM)
    • Память с последовательным доступом
    • Кэш-память
    • Виртуальная память
  2. Внешняя память
    • Внешние жесткие диски
    • Твердотельный накопитель (SSD)
    • USB-накопитель и т. Д.

Оперативная память (RAM)

RAM представляет собой внутреннюю память CPU для хранения данных, программы и результатов программы. Это память для чтения / записи. Это называется оперативной памятью (RAM).

Поскольку время доступа в ОЗУ не зависит от адреса слова, то есть каждое место хранения внутри памяти так же легко добраться, как и другое место, и занимает столько же времени. Мы можем проникнуть в память наугад и чрезвычайно быстро, но также может быть довольно дорогим.

RAM является энергозависимым, то есть данные, хранящиеся в ней, теряются, когда мы выключаем или выключаем компьютер, или если есть питание Неудача. Следовательно, с компьютерами часто используется резервная система бесперебойного питания (ИБП).

ОЗУ

невелико, как с точки зрения физического размера, так и с точки зрения объема данных, которые можно хранить.

Типы RAM

RAM бывает двух типов:

  1. Статическая RAM (SRAM)
  2. Динамическая память (DRAM)

Статическая RAM (SRAM)

Слово static указывает на то, что память сохраняет свое содержимое, пока остается поданным питание.

Однако данные теряются при отключении питания из-за нестабильности.

В микросхемах статического ОЗУ

используется матрица из 6 транзисторов без конденсаторов.

Транзисторы

не требуют питания для предотвращения утечки, поэтому статическое ОЗУ не нужно обновлять на регулярной основе. Из-за дополнительное пространство в матрице, статическая RAM использует больше микросхем, чем динамическая RAM для того же объема памяти, что делает затраты на производство выше.

Используется статическая ОЗУ

, поскольку кэш-память должна быть очень быстрой и небольшой.

Динамический ОЗУ (DRAM)

Динамическое ОЗУ, в отличие от статического ОЗУ, необходимо постоянно заменять, чтобы в нем сохранялись данные. Это делается путем размещения память на схеме обновления, которая перезаписывает данные несколько сотен раз в секунду.

Dynamic RAM используется для большинства системной памяти, потому что она дешевая и маленькая.

Все динамические блоки памяти состоят из ячеек памяти. Эти ячейки состоят из одного конденсатора и одного транзистора.

Постоянное запоминающее устройство (ПЗУ)

ROOM означает постоянную память.Память, из которой мы можем только читать, но не можем писать.

Этот тип памяти является энергонезависимым. Информация постоянно сохраняется в такой памяти во время производства.

ПЗУ, хранит такие инструкции, которые требуются для запуска компьютера при первом включении электричества, эта операция называется бутстрапом.

Чип

ROM используется не только в компьютере, но и в других электронных устройствах, таких как стиральная машина и микроволновая печь.

Типы ПЗУ

Вкратце приведем следующий список ПЗУ, имеющихся в компьютере:

  1. Маскированная постоянная память (MROM)
  2. Программируемая постоянная память (PROM)
  3. Стираемое и программируемое постоянное запоминающее устройство (EPROM)
  4. Электрически стираемая и программируемая постоянная память (EEPROM)

Маскированная постоянная память для чтения (MROM)

Самые первые ПЗУ были аппаратными устройствами, которые содержали заранее запрограммированный набор данных или инструкций.Такого рода ПЗУ известны как ПЗУ с маской. Это недорогое ПЗУ.

Программируемая постоянная память (PROM)

PROM - это постоянная память, которая может быть изменена пользователем только один раз. Пользователь покупает пустой PROM и вводит желаемое содержимое. с помощью программатора PROM.

Внутри PROM есть небольшие предохранители, которые сгорают во время программирования. Его можно запрограммировать только один раз, и это не так. стираемый.

Стираемое и программируемое постоянное запоминающее устройство (СППЗУ)

EPROM можно стереть, подвергнув ее воздействию ультрафиолетового света в течение до 40 минут.

Обычно эту функцию выполняет ластик СППЗУ. во время программирования электрический заряд задерживается в изолированной области затвора.

Заряд сохраняется более 10 лет, поскольку в заряде нет пути утечки. Для стирания этого заряда ультрафиолетовый свет пропускается через окошко (крышку) из кварцевого кристалла. Воздействие ультрафиолетового света рассеивает заряд. При нормальном использовании кварц крышка заклеена наклейкой.

электрически стираемая и программируемая постоянная память (EEPROM)

EEPROM программируется и стирается электрически.Его можно стереть и перепрограммировать около десяти тысяч раз.

Как стирание, так и программирование занимают от 4 до 10 миллисекунд. В EEPROM любую ячейку можно выборочно стереть и запрограммировать.

EEPROM можно стереть по одному байту за раз, вместо того, чтобы стирать весь чип. Следовательно, процесс перепрограммирования гибок, но медленный.

Память с последовательным доступом

Последовательный доступ означает, что система должна искать устройство хранения с начала адреса памяти, пока не найдет требуемый фрагмент данных.

Устройство памяти, которое поддерживает такой доступ, называется памятью с последовательным доступом или памятью с последовательным доступом.

Магнитная лента на примере памяти последовательного доступа.

Кэш-память

Кэш-память - это высокоскоростная полупроводниковая память, которая может увеличить скорость процессора. Он действует как буфер между процессором и основным объем памяти.

Он используется для хранения тех частей данных и программ, которые наиболее часто используются ЦП. Части данных и программы передаются с диска в кэш-память операционной системой, откуда ЦП может получить к ним доступ.

Кэш-память, находится между ЦП и основной памятью.

Это также называется памятью ЦП, доступ к которой микропроцессор компьютера может получить быстрее, чем к обычной оперативной памяти.

Эта память обычно интегрируется непосредственно с микросхемой ЦП или размещается на отдельной микросхеме с отдельной шиной. соединяются с ЦП.

Кэш-память экономит время и повышает эффективность, поскольку в ней хранятся самые последние обработанные данные, что занимает получение проще.

Функции кэш-памяти

Основное назначение кэш-памяти - хранить программные инструкции, на которые программное обеспечение часто ссылается во время операция. Быстрый доступ к этим инструкциям увеличивает общую скорость работы программного обеспечения.

Основная функция кэш-памяти - ускорение рабочего механизма компьютера.

Преимущества кэш-памяти

Кэш-память быстрее основной памяти.

Потребляет меньше времени доступа по сравнению с основной памятью.

В нем хранится программа, которая может быть выполнена за короткий период времени.

Хранит данные для временного использования.

Недостатки кэш-памяти

Объем кэш-памяти ограничен.

Кэш-память очень дорога.

Виртуальная память

Это метод, который позволяет выполнять процессы, которые не полностью доступны в памяти. Основное видимое Преимущество этой схемы в том, что программы могут быть больше, чем физическая память.

Виртуальная память - это отделение логической памяти пользователя от физической памяти. Такое разделение позволяет создавать очень большие виртуальные память должна быть предоставлена ​​программистам, когда доступна только меньшая физическая память.

Ниже приведены ситуации, когда не требуется полностью загружать всю программу в основную память.

Записанные пользователем подпрограммы обработки ошибок используются только в случае возникновения ошибки в данных или вычислениях.

Некоторые опции и функции программы могут использоваться редко.

Многим таблицам назначается фиксированный объем адресного пространства, даже если фактически используется только небольшой объем таблицы.

Возможность выполнения программы, которая только частично находится в памяти, противоречит многим преимуществам.

Меньшее количество входов / выходов (I / O) потребуется для загрузки или замены каждой пользовательской программы в память.

Программа больше не будет ограничена доступным объемом физической памяти.

Каждая пользовательская программа может занимать меньше физической памяти, больше программ может выполняться одновременно с соответствующим увеличением в загрузке ЦП и сквозном выводе.

Внешняя память (дополнительная память)

Вторичная память намного больше по размеру, чем основная память, но работает медленнее. Обычно в нем хранятся системные программы, инструкции и Дата файлы. Она также известна как вспомогательная память. Его также можно использовать как переполнение / виртуальную память, если основная память емкость превышена.

Процессор не может напрямую получить доступ к вторичной памяти. Сначала данные / информация вспомогательного память передается в основную память, а затем к этой информации может получить доступ ЦП.

Характеристики вспомогательной памяти

Вот характеристики вспомогательной памяти:

  • Энергонезависимая память - Данные не теряются при отключении питания.
  • Многоразовый - Данные находятся во вторичном хранилище на постоянной основе, пока они не будут перезаписаны или удалены пользователем.
  • Надежность - Данные во вторичном хранилище безопасны благодаря высокой физической стабильности вторичного устройства хранения.
  • Удобство - С помощью компьютерного программного обеспечения уполномоченные люди могут быстро найти данные и получить к ним доступ.
  • Емкость - Вторичное хранилище может хранить большие объемы данных в наборах из нескольких дисков.
  • Стоимость - Хранить данные на ленте или диске намного дешевле, чем в первичной памяти.

Мы также можем сказать, что вторичная память - это другой тип памяти, который необходим для постоянного хранения данных в течение длительного времени.

Типы вторичных запоминающих устройств

Существуют различные типы вторичных запоминающих устройств для хранения данных для будущего использования. Эти устройства позволяют читать или писать где угодно в памяти.

Обычно используемые вторичные запоминающие устройства:

  • магнитная лента
  • магнитный диск
  • и оптический диск и т. Д.

Магнитная лента

Это похоже на аудиокассету, содержащую пластиковую полосу, покрытую магнитным материалом.Данные закодированы на магнитный материал в виде электрического тока. Состояние проводимости (ВКЛ) представляет ОДИН (1) и состояние непроводимости (ВЫКЛ) представляют НУЛЬ (0).

Тип кодирования данных называется хранилищем двоичных данных. Магнитная лента с большой емкостью и недорогая, она может хранить данные от 60 МБ до 24 ГБ.

Магнитный диск

Это носители с прямым доступом, где доступ к данным намного быстрее, потому что нет необходимости проходить вызов предыдущие данные для достижения определенных данных.

В запоминающих устройствах данного типа присутствует круглая дискета (круглый диск) из пластика, покрытая магнитными чернилами на какая кодировка данных выполняется.

Магнитный диск обычно бывает трех типов, а именно:

  • дискета
  • жесткий диск
  • Винчестер диск

Оптический диск

Данные могут считываться с оптического диска и записываться на него с помощью лазерного луча. Эти диски способны хранить большое количество данные в ГБ.Они доступны в виде стираемых оптических дисков CD-ROM, WORM (однократная запись только для чтения).

В CD-ROM данные могут храниться один раз и только для чтения. Они называются компакт-дисками с постоянной памятью. Они могут хранить данные от 600 МБ до 1 ГБ. Для чтения данных с CD-ROM используется специальное устройство, называемое проигрывателем компакт-дисков.

Внешний жесткий диск

Все те приводы или устройства, которые используются для хранения информации вне компьютера. Это устройство может быть подключено или не подключено к компьютер.Например, к ноутбуку подключен жесткий диск емкостью 500 ГБ, 1 ТБ или 2 ТБ и т. Д. Для постоянного хранения любой информации внутри. этот драйв. В настоящее время многие люди также используют внешний жесткий диск или жесткий диск для хранения любой важной или дополнительной информации на нем. водить машину.

Твердотельный накопитель (SSD)

Твердотельный накопитель

(SSD) - это энергонезависимое запоминающее устройство, в котором в качестве памяти используются сборки интегральных схем для хранения любой информации. настойчиво.

Флэш-накопитель USB

USB-накопитель

является твердотельным, то есть не имеет движущихся частей.На USB-накопителе информация хранится в электронном виде. используя миллионы маленьких вентилей, которые имеют значение ноль (0) и один (1).

Проще говоря, это устройство, которое используется для хранения информации. Он включает в себя флеш-память и Встроенный интерфейс универсальной последовательной шины (USB).

USB-накопитель

меньше по размеру или удобен в использовании, то есть вы можете носить его с собой в кармане. Это означает, что, Вы можете носить всю информацию прямо в кармане с помощью USB-накопителя.

Иерархия памяти

Теперь давайте посмотрим на фото или схему иерархии памяти с ее характеристиками.

computer memory hierarchy

Схема выше представляет иерархию памяти компьютера.

Вот характеристики иерархии памяти при движении сверху вниз:

  • Увеличение емкости хранилища
  • Снижается стоимость одного бита хранилища
  • Уменьшается частота обращения к памяти ЦП
  • Время доступа ЦП увеличивается

Компьютерный фундаментальный онлайн-тест


«Предыдущее руководство Следующее руководство »



.

Оперативная память компьютеров и ноутбуков - Intel

Как работает ОЗУ компьютеров и ноутбуков
ОЗУ означает оперативную память, но что это означает? Оперативная память вашего компьютера - это, по сути, краткосрочная память, в которой данные хранятся по мере необходимости процессору. Это не следует путать с долгосрочными данными, которые хранятся на вашем жестком диске и остаются там, даже когда ваш компьютер выключен. Каждый раз, когда вы играете в игру с жесткого диска компьютера или транслируете фильм из Интернета, все данные, необходимые процессору вашего компьютера для игры или просмотра фильма, сохраняются в оперативной памяти.Это сделано для того, чтобы ваш процессор мог быстро добраться до него. Когда вы закончите играть в игру или смотреть фильм и закрываете его, процессору больше не нужны эти данные, поэтому он заменяет их следующей задачей, которую вы ему даете. Оперативная память может замедлить работу вашего компьютера, если ее не хватает процессору для выполнения заданных вами задач. Если ваш процессор хочет загрузить больше данных, чем может обработать оперативная память вашего компьютера, ему придется постоянно возвращаться к жесткому диску или в Интернет, чтобы снова получить информацию.Это похоже на то, как кто-то пытается собрать больше теннисных мячей, чем они могут унести; в конце концов, они тратят больше времени на сбор теннисных мячей, чем на игру!

Как работает ваш компьютерный процессор
Процессор определяет способность компьютера думать, как и сознательные части вашего мозга. Чем быстрее вы сможете ответить на математические задачи, прочитать и понять слова в книге, понять смысл шутки или точно сказать своему телу, что делать во время занятий спортом, тем сильнее будет ваш мозг.Так же обстоят дела с компьютерными процессорами. Чем они мощнее, тем быстрее они могут выполнять задачи с данными (игры, фильмы, приложения и т. Д.), Которые доступны на вашем жестком диске и в Интернете. Процессор вашего компьютера работает вместе с оперативной памятью, чтобы работать как единая команда. Оперативная память похожа на вашу кратковременную память. Если бы вы ударились головой и потеряли кратковременную память (оперативную память), вы бы не смогли вспомнить ничего, что произошло более нескольких секунд назад. Однако вы все равно сможете отлично мыслить.Но подумайте - без памяти у вас (и вашего процессора) возникнут серьезные трудности.

Больше производительности при меньших затратах
То, что вы найдете на рынке в наши дни в виде моноблоков, ноутбуков и устройств 2 в 1, может легко обеспечить гораздо более высокую производительность за гораздо меньшие деньги, чем вы могли подумать, что это возможно. Если вы сомневались в покупке нового компьютера, обратите внимание на некоторые из доступных сегодня суперпроизводительных компьютеров.Вы будете приятно удивлены тем, что найдете.

.

Компьютерная память - Простая английская Википедия, бесплатная энциклопедия

Компьютерная память - это область временного хранения. Он содержит данные и инструкции, которые необходимы центральному процессору (ЦП). Перед запуском программы она загружается из хранилища в память. Это позволяет процессору прямой доступ к компьютерной программе. Память нужна всем компьютерам.

Компьютер - это обычно двоичное цифровое электронное устройство. Двоичный означает, что он имеет только два состояния.Вкл или Выкл. Ноль или один. В двоичном цифровом компьютере транзисторы используются для включения и выключения электричества. Память компьютера состоит из множества транзисторов.

Каждая настройка включения / выключения в памяти компьютера называется двоичной цифрой или битом. Группа из восьми бит называется байтом. Байт состоит из двух полубайтов по четыре бита в каждом. Ученые-компьютерщики составили слова бит и байт . Слово бит является сокращением от двоичной цифры . Он берет bi из двоичного кода и добавляет t из числа.Набор бит назывался укусом. Чтобы избежать путаницы, компьютерные ученые изменили написание на байт . Когда компьютерным специалистам понадобилось слово для полубайта, они подумали, что полубайт , как и полубайт , было бы забавным словом. [1]

Байт памяти используется для хранения кода для представления символа, такого как число, буква или символ. В восьми битах можно хранить 256 различных кодов. Этого было достаточно, и байт стал фиксированным на восьми битах.Это позволяет использовать десять десятичных цифр, 26 букв в нижнем регистре, 26 букв в верхнем регистре и множество символов. Ранние компьютеры использовали шесть битов на байт. Это дало им 64 различных кода. На этих компьютерах не было строчных букв. [2]

Ученые-компьютерщики должны были договориться о том, какой код будет представлять каждый символ. Большинство современных компьютеров используют ASCII, американский стандартный код для обмена информацией . В ASCII каждый код состоит из восьми битов - любая комбинация нулей и единиц - и составляет один символ.Буква А обозначается кодом 01000001.

Чтобы иметь возможность использовать все символы на всех языках мира, современным компьютерам требуется более 256 различных символов. Другая кодовая система, называемая Unicode, позволяет использовать 1 112 064 различных символа, используя от одного до четырех байтов для каждого символа.

ЦП компьютера может обращаться к каждому отдельному байту. Он использует адрес для каждого байта. Адреса памяти компьютера начинаются с нуля и увеличиваются до максимального числа, которое компьютер может использовать.У старых компьютеров был ограниченный объем памяти, который они могли адресовать. 32-разрядные компьютеры могут адресовать до 4 ГБ памяти. Современные компьютеры используют 64 бита и могут адресовать до 18 446 744 073 709 551 616 байт = 16 эксабайт памяти.

Числа, которые используются компьютерами, могут быть очень большими. Чтобы упростить задачу, можно использовать единицы измерения K (для килобайт) или Ki (для кибибайтов). В компьютерной памяти числа являются степенью двойки. Один кибибайт равен двум в степени 10, то есть 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 и записывается как 2 10 = 1024 байта.Например, 64 Кибибайта, записанные как 64 КБ или 64 КБ памяти, равны 65 536 байтам (1024 × 64 = 65 536). Для большего объема памяти используются блоки мегабайт (МБ) или мегабайт (МБ) и гигабайт (ГБ) или гибибайт (ГБ). Один мегабайт компьютерной памяти означает 2 20 байтов или 1024 КБ, что составляет 1 048 576 байтов. Один гибибайт означает 2 30 байт или 1024 МБ.

Числа кратны двум. Вот почему килобайт памяти составляет 1024 байта, а не 1000, как в случае с килограммом.Чтобы попытаться избежать этой путаницы, Международная электротехническая комиссия (МЭК) использует имена кибибайт, мебибайт и гибибайт для двоичных степеней. Они используют килобайт, мегабайт и гигабайт для обозначения степени 10. Объединенный совет по разработке электронных устройств (JEDEC) сохранил старые названия. Что еще хуже, размеры компьютерных хранилищ, таких как жесткие диски (HDD), измеряются степенями десяти. Таким образом, диск на 500 ГБ равен 500 x 1000 x 1000 x 1000 байт. Это намного меньше 500 ГБ памяти, что составляет 500 x 1024 x 1024 x 1024.Большинство специалистов по информатике до сих пор используют старые названия и должны помнить, что единицы измерения различаются, когда речь идет о памяти и устройствах хранения.

Есть несколько программ и инструкций, которые всегда будут нужны компьютеру. Постоянная память (ROM) - это постоянная память, которая используется для хранения этих важных управляющих программ и системного программного обеспечения для выполнения таких функций, как загрузка или запуск программ. ПЗУ энергонезависимо. Это означает, что содержимое не теряется при отключении питания.Его содержимое записывается при сборке компьютера, но в современных компьютерах пользователь может изменять содержимое с помощью специального программного обеспечения.

Оперативная память (RAM) используется в качестве рабочей памяти компьютерной системы. Он временно хранит входные данные, промежуточные результаты, программы и другую информацию. Его можно читать и / или писать. Обычно он непостоянен, что означает, что все данные будут потеряны при отключении питания. В большинстве случаев он снова загружается с жесткого диска, который используется в качестве хранилища данных.

Энергонезависимая память - это память компьютера, в которой хранится сохраненная информация при отключении питания.
Примеры энергонезависимой памяти:

Иногда может относиться к компьютерной памяти. Они всегда энергонезависимы.
Примеры включают:

  1. «Определение полубайта». techtarget.com . TechTarget. Проверено 5 декабря 2019 года. полубайт несет метафору «съедобных данных», установленную с битом и байтом
  2. «Диапазон 1900 ICT / ICL» (PDF).ourcomputerheritage.org. 16 декабря 2003 г. Дата обращения 5 декабря 2019 г.
.

Основы работы с компьютером: внутри компьютера

Урок 5: Внутри компьютера

/ ru / computerbasics / buttons-and-ports-on-a-computer / content /

Внутри компьютера

Вы когда-нибудь заглядывали внутрь компьютерного корпуса или видели его фотографии внутри? Маленькие детали могут показаться сложными, но внутренняя часть корпуса компьютера на самом деле не так уж и загадочна. Этот урок поможет вам освоить базовую терминологию и немного больше понять, что происходит внутри компьютера.

Посмотрите видео ниже, чтобы узнать, что находится внутри настольного компьютера.

Ищете старую версию этого видео? Вы все еще можете увидеть его здесь:

Материнская плата

Материнская плата - это основная печатная плата компьютера. Это тонкая пластина, на которой находится процессор, память, разъемы для жесткого диска и оптических приводов, карты расширения для управления видео и аудио, а также подключения к портам вашего компьютера (например, портам USB).Материнская плата подключается прямо или косвенно ко всем частям компьютера.

ЦП / процессор

Центральный процессор (ЦП), также называемый процессором , расположен внутри корпуса компьютера на материнской плате. Его иногда называют мозгом компьютера, и его задача - выполнять команды. Каждый раз, когда вы нажимаете клавишу, щелкаете мышью или запускаете приложение, вы отправляете инструкции процессору.

ЦП обычно представляет собой двухдюймовый керамический квадрат с кремниевым чипом , расположенным внутри.Чип обычно размером с миниатюру. ЦП вставляется в гнездо ЦП материнской платы, которое закрывается радиатором , который поглощает тепло от ЦП.

Скорость процессора измеряется в мегагерц (МГц), или миллионах инструкций в секунду; и гигагерц (ГГц) , или миллиарды инструкций в секунду. Более быстрый процессор может выполнять инструкции быстрее. Однако реальная скорость компьютера зависит от скорости многих различных компонентов, а не только процессора.

RAM (оперативная память)

RAM - это кратковременная память вашей системы . Всякий раз, когда ваш компьютер выполняет вычисления, он временно сохраняет данные в ОЗУ, пока они не понадобятся.

Это кратковременная память исчезает при выключении компьютера. Если вы работаете с документом, электронной таблицей или файлом другого типа, вам нужно сохранить , чтобы не потерять. Когда вы сохраняете файл, данные записываются на жесткий диск , который действует как долговременное хранилище .

RAM измеряется в мегабайтах (МБ) или гигабайтах (ГБ). Чем на больше RAM , тем больше вещей может делать ваш компьютер одновременно. Если у вас недостаточно оперативной памяти, вы можете заметить, что ваш компьютер работает медленно, когда у вас открыто несколько программ. Из-за этого многие люди добавляют к своим компьютерам дополнительной оперативной памяти для повышения производительности.

Жесткий диск

Жесткий диск - это место, где хранятся ваше программное обеспечение, документы и другие файлы.На жестком диске длительного хранения , что означает, что данные все еще сохраняются, даже если вы выключите компьютер или отсоедините его от сети.

Когда вы запускаете программу или открываете файл, компьютер копирует некоторые данные с жесткого диска в RAM . Когда вы сохраняете файл , данные копируются обратно на жесткий диск . Чем быстрее жесткий диск, тем быстрее ваш компьютер может запускать и загружать программы .

Блок питания

Блок питания в компьютере преобразует мощность от настенной розетки в тип питания, необходимый для компьютера.Он передает питание через кабели на материнскую плату и другие компоненты.

Если вы решите открыть корпус компьютера и осмотреться, обязательно сначала отключите от розетки. Прежде чем прикасаться к внутренним частям компьютера, вы должны прикоснуться к заземленному металлическому объекту - или к металлической части корпуса компьютера - для снятия любого статического заряда. Статическое электричество может передаваться по компьютерным цепям, что может серьезно повредить вашу машину.

Карты расширения

Большинство компьютеров имеют слотов расширения на материнской плате, которые позволяют добавлять различные типы карт расширения .Это около

.

Смотрите также