Что такое спикер в компьютере


Что такое спикер, где находится и зачем он нужен в компьютере

О чем мечтается в конце трудового дня? О том, чтобы скорей очутиться дома, плюхнуться в любимое кресло, ткнуть пальцем в заветную кнопку и услышать приветливый писк железного «питомца».

Короткий одиночный звук при включении компьютера издает системный динамик – спикер. Это не то устройство, которое проигрывает музыку, его задача – только пищать. Пищать для того, чтобы…Итак, что такое спикер, и зачем он нужен в компьютере и где находится.

И это всё о нем

Спикер, бузер, бипер, хрипер, пищалка, гудок, свисток и системный динамик – все эти звучные имена принадлежат одной невзрачной загогулине в виде цилиндрика с отверстием посередине. Невзрачной – но важной, поскольку она – голос ПК, которым он извещает владельца о своем благополучии или неисправности по результатам процедуры POST – самодиагностики при включении, которую проводит BIOS.

Тот самый короткий писк и последующая загрузка операционной системы говорят о том, что все устройства компьютера успешно прошли проверку и готовы к работе. А если что-то пошло не так и какая-то из железяк сообщила о неполадке, спикер выдает POST-коды – серию звуковых сигналов определенной продолжительности, которые указывают на причину сбоя. Их количество, порядок и тональность индивидуальны для каждого производителя BIOS.

В частности, последовательность одного длинного и одного короткого сигнала означает:

  • У AMI BIOS – неполадку блока питания.
  • У Phoenix BIOS – ошибку оперативной памяти.
  • У Compaq BIOS – ошибку контрольной суммы памяти CMOS.
  • У IBM BIOS – неисправность материнской платы.

Более подробная информация о значении сигналов BIOS разных разработчиков приведена в многочисленных справочниках, например, в этом.

Почему именно звук?

«Зачем нужна какая-то пищалка, если информацию о прохождении POST можно вывести на экран?» – возможно, спросите вы. Так-то оно так, но инициализация видео происходит несколько позже, чем начинается процесс самотестирования, а спикер готов к работе сразу, как подключается к питанию. Поэтому только он может известить о неполадке, возникшей на ранних этапах запуска системы, пока видео еще не заработало.

Где находится спикер. Как его подключить, если он не установлен

Системный динамик – это простой, недорогой и действенный инструмент диагностики неисправностей компьютера. И очень старый. Материнские платы 10-ти более летней давности, как правило, имели его в составе «набортных» устройств. Он был припаян непосредственно к плате и мог располагаться где угодно.

На современных материнках спикеров уже нет (за редким исключением), но есть разъемы для их подключения. Обычно они находятся в составе контактной группы F_Panel где-то поблизости от разъема кнопки включения компьютера либо на отдельной колодке.

Разъем подключения системного динамика имеет 4 контакта, 1 из которых – плюсовой, подает на него питание +5V, 1 имеет потенциал -5V или земли и 2, ранее использовавшиеся для запитки этого устройства от линии 12V, подключены к земляной шине или не разведены.

Контакты спикера могут быть обозначены сокращениями BZR+ и BZR-, SPEAK+ и SPEAK-, SPK+ и SPK-, Speaker+ и Speaker-. В отличие от кнопки питания, при подключении пищалки следует соблюдать полярность – сторона разъема с проводком красного цвета соответствует контакту +5V.

Перед подключением системного динамика к материнской плате не забудьте обесточить компьютер!

А где взять спикер, если его нет в комплекте поставки материнки? Возможны следующие варианты:

  • Снять с другого компьютера.
  • Приобрети отдельно, например, на Алиэкспресс.
  • Купить корпус системного блока со встроенным динамиком.

Кстати, спикеры могут быть не только на материнских платах, но и на видеокартах. На последних они используются для оповещения пользователя о проблемах с дополнительным питанием.

Индикатор POST – современная замена спикера

Современные материнские платы для геймеров, оверклокеров и т. д., вместо системных динамиков оборудуют дисплеями с сегментными индикаторами POST-кодов. На них высвечиваются числа в шестнадцатеричном формате, которые соответствуют этапам прохождения POST.

POST- индикаторы предназначены для тех же задач, что и пищалка, но они гораздо информативнее, так как событий, закодированных числами, значительно больше, чем всевозможных комбинаций писков.

В норме после включения ПК посткоды на дисплее индикатора моментально сменяют друг друга и останавливаются на последнем, который указывает на полное прохождение самодиагностики и передачу управления от BIOS к операционной системе. В случае возникновения ошибки остановка происходит на одном из промежуточных кодов, по значению которого и определяют источник сбоя. Таблицы с описанием значений посткодов публикуются в мануалах к материнским платам и на посвященных им веб-ресурсах.

Если же плата не оборудована ни спикером, ни POST-индикатором, для определения характера ее неисправности можно использовать внешнюю POST-карту. Ее подключают к одному из разъемов компьютера – чаще всего к PCI-E, PCI или USB, и по значению на дисплее, который может быть 2-4-6-значным, вычисляют виновника.

Впрочем, посткарты – это инструменты профессиональных ремонтников и домашним пользователям, как правило, не нужны. Но если вас интересует эта тема, желательно обзавестись (благо многие из них недороги), ведь спикеры, очевидно, в ближайшее время уйдут в историю, а хорошая посткарта прослужит много лет.

Что такое спикер в компьютере?

Компьютерный спикер это совершенно простая и в то же время полезная вещь в любом компьютере. Представляет он из себя маленький динамик, который издает негромкий писк во время включения компьютера.

Конечно, далеко не у всех он присутствует и без него ваш компьютер будет функционировать ни чуть не хуже чем с ним, но вот когда компьютер перестает включаться или при включении показывает черный экран без надписей, то вот здесь Speaker пригодиться как никогда кстати.

Благодаря ему, а точнее той последовательности сигналов, которую он может выдавать, либо не выдавать вообще можно определить что в компьютере вышло из строя и почему он перестал работать.

Самые распространенные последовательности сигналов спикера:

Некоторые материнские платы имеют встроенный Speaker, но все же большинство из них требуют отдельного подключения этого небольшого, но полезного устройства.

Определить есть ли спикер на вашей материнской плате просто. Если при включении компьютера вы слышите 1 или более коротких либо длинных сигналов, значит он у вас есть. Если компьютер уже не включается и ничего в нем не пищит, значит нужно заглянуть в открытый системный блок. Обычно спикер находится в правой нижней части материнской платы.

Вот так выглядит встроенный в мат. плату Speaker:

Встроенный компьютерный спикер на материнской плате

А вот так выглядит внешний подключаемый Speaker:

Внешний компьютерный спикер на материнской плате

Как подключить спикер к материнской плате?

Для начала нужно найти контакты. Обычно они находятся в правом нижнем углу материнской платы возле контактов кнопки включения и подписаны как “Speak” или “SPK”.

Куда подключить спикер к материнской плате

На рисунке выше видно место подключение спикера. Причем слева стоит значок “+”, а справа “-“. Это значит, что красный проводок спикера одевать на контакт со знаком “+”, а черный со знаком “-“.

Если полярность на материнской плате не указана, либо провода на спикере одинакового цвета можете попробовать подключить Speaker сначала одной стороной, потом другой. Почти всегда он будет работать даже не соблюдая полярность.

 

Speaker на материнской плате - что это?

Опубликовано 12.02.2020 автор — 0 комментариев

Здравствуйте, дорогие посетители моего блога! Сегодня разберем разъем speaker на материнской плате: что это такое, нужен ли он в компьютере и как правильно его подключать. О том, что такое кнопка memOk из предыдущей статьи, вы можете прочитать тут.

Для чего нужен спикер

Так называется connector 4 pin, расположенный на любой современной материнской плате. Нужен он для подключения сервисного динамика: небольшого круглого спикера с парой проводков.

Запитать его очень просто: красный проводок подключается на speaker (первый контакт), черный, который может быть дополнительно маркирован изображением треугольника, на +5V. Инструкция по подключению есть в документации от материнской платы.

При неправильном подключении не случится ничего страшного: не будет короткого замыкания и запуска сизого дыма из недр компьютера. Единственное, что может произойти — динамик не будет подавать сервисные сигналы.

Какие сигналы издает спикер

При нормальной работе компьютера после нажатия на кнопку питания динамик издает один писк. Это свидетельствует, что проверка оборудования POST выполнена успешно и сейчас начнется загрузка операционной системы. Речь не только о Виндовс: независимо от используемой ОС проводится аппаратная проверка «железа».

Если что-то пошло не так и POST обнаружил дефект, спикер сигнализирует об этом, подавая соответствующий сигнал. Если же сигнала нет вообще, то, скорее всего, вышел из строя блок питания и энергия на материнку не подается. Рассмотрим, что можно услышать.

Award BIOS

  • Непрерывный писк — неисправен блок питания;
  • Короткий повторяющийся сигнал — то же самое;
  • Длинный повторяющийся — неполадки с ОЗУ;
  • 2 коротких писка — незначительные проблемы с креплением шлейфов;
  • 3 долгих — неисправен контроллер клавиатуры;
  • 1 долгий и 1 краткий — неисправна оперативка;
  • 1 долгий и 2 коротких — неполадки с графическим чипом;
  • 1 долгий и 3 кратких — неполадки с клавиатурой;
  • 1 длинный и 9 коротких — ошибка чтения микросхем БИОСа.

AMI BIOS

Короткие сигналы:

  • 2 — неисправность ОЗУ;
  • 3 — ошибка первых 64 Кб основной памяти;
  • 4 — неисправен системный таймер;
  • 5 — неисправен процессор;
  • 6 — неполадки с контроллером клавиатуры;
  • 7 — неполадки в работе системной платы;
  • 8 — неисправна видеопамять в видеокарте;
  • 10 — не работает CMOS-память;
  • 11— неисправность ОЗУ;

Прочие:

  • 1 долгий и 2 коротких — неполадки в работе графического ускорителя;
  • 1 долгий и 3 коротких — 1 аналогично;
  • 1 долгий и 8 коротких — то же самое.

Phoenix BIOS

Этот БИОС пищит немного не так, как его «собратья»: все сигналы у него краткие, длительных нет. Точечные гудки чередуются с паузами между ними. Звучит более мелодично, если можно так сказать. Какие сигналы он подает:

  • 1–1‑2 — ошибки в работе ЦП;
  • 1–1‑3 — невозможно прочитать информацию из CMOS;
  • 1–3‑2 — Не запускается тест ОЗУ;
  • 1–3‑3 — один из контроллеров оперативки поврежден;
  • 1–3‑4 — то же самое;
  • 3–3‑1 — низкий заряд батарейки на материнской плате;
  • 3–3‑4 — неправильно работает видеоадаптер;
  • 4–2‑3 — неполадки с клавиатурой.

Основываясь на этих сигналах, можно определить неисправность, что облегчит поиск проблемы. Впрочем, спикер — это не компонент первой необходимости и при нормальной работе ПК он, фактически, не нужен. И если он у вас не подключен, нет совершенно ничего страшного.

Также для вас будет полезно почитать «spdif out — что это» и «sys fan на материнской плате». Буду признателен, если вы поделитесь этой публикацией в социальных сетях. Пока!

С уважением, автор блога Андрей Андреев.

Как определить неисправность по писку системника: расшифровываем сигналы BIOS | Готовые компьютеры | Блог

Вы знали, что по звуковым сигналам BIOS можно легко понять, что не так с вашим компьютером? Вот, как это сделать.

Казалось бы, все просто: запоминаем «азбуку Морзе» биоса и вовремя прислушиваемся. Но на деле ситуация несколько сложнее. У BIOS разных производителей различаются и звуковая индикация. Знать все сигналы наизусть и держать их в уме сложно и незачем. Поэтому мы собрали полную расшифровку сигналов BIOS для большинства материнских плат. Сохраняйте и пользуйтесь в нужный момент!

Подготовка 

Прежде чем расшифровывать сигнал, необходимо узнать, BIOS какого производителя используется на вашей материнской плате. Вы можете прочитать это в мануале к материнке или открыть сам BIOS. Производитель обычно указывается внизу рабочего окна:

В некоторых случаях нужна еще версия BIOS — узнать ее можно прямо в Windows. Для этого открываем окно «Выполнить» и вводим команду msinfo32. Откроется окно «Сведения о системе». Смотрим пункт «Версия BIOS»:

Также можно узнать версию BIOS, открыв командную строку и введя команду: wmic bios get smbiosbiosversion.

BIOS большинства нижеуказанных производителей используется на многих материнских платах. Если вы счастливчик с редким типом BIOS, то непопулярные варианты мы тоже включили в наш «переводчик». 

Quadtel

  • Один краткий сигнал — компьютер полностью исправен, ошибки отсутствуют.
  • Два кратких сигнала — обнаружено повреждение CMOS RAM.
  • Один длинный и два кратких — неисправна видеокарта.
  • Один длинный и три кратких — обнаружена неисправность периферийных контроллеров.

AWARD

  • Один краткий сигнал — компьютер исправен, ошибки отсутствуют.
  • Два кратких сигнала — сбой ОЗУ. Нарушена четность.
  • Три кратких — сбой клавиатурного контроллера.
  • Один краткий и один длинный сигнал — сбой ОЗУ.
  • Один длинный и два кратких сигнала — сбой видеокарты.
  • Один длинный и три кратких — сбой клавиатуры.
  • Один длинный и девять кратких — сбой чтения памяти BIOS. Возникает при неисправности схемы.
  • Один короткий и повторяющийся сигнал — ошибка в цепях питания или неисправность блока питания.
  • Один длинный повторяющийся сигнал — неисправность ОЗУ.
  • Постоянно повторяющийся сигнал или отсутствие сигналов — неисправность БП.

Dell

  • Один звуковой сигнал (пауза) два звуковых сигнала — не найдена видеокарта.
  • Один сигнал (пауза) два сигнала (пауза) два сигнала (пауза) три сигнала — нарушена контрольная сумма BIOS.
  • Один сигнал (пауза) три сигнала (пауза) один сигнал (пауза) три сигнала — сбой клавиатуры.
  • Один сигнал (пауза) три сигнала (пауза) три сигнала (пауза) один сигнал — ошибка ОЗУ.
  • Один сигнал (пауза) три сигнала (пауза) четыре сигнала (пауза) один сигнал — сбой оперативной памяти на линии.
  • Один сигнал (пауза) три сигнала (пауза) четыре сигнала (пауза) три сигнала — сбой оперативной памяти, ошибка только на младшем бите.
  • Один сигнал (пауза) четыре сигнала (пауза) один сигнал (пауза) один сигнал — сбой оперативной памяти, старший бит.

AMI

Короткие сигналы AMI:

  • Один — ошибок нет.
  • Два — нарушена четность ОЗУ.
  • Три — не удается прочитать первые 64 килобайт ОЗУ.
  • Четыре — сбой таймера.
  • Пять — неисправность CPU.
  • Шесть — ошибка клавиатуры.
  • Семь — неисправность материнки.
  • Восемь — сбой видеокарты.
  • Девять — нарушена контрольная сумма.
  • Десять — нет доступа к CMOS.
  • Одиннадцать — сбой кэш-памяти. 

Разные ошибки видеокарты на AMI:

  • Один длинный и два кратких.
  • Один длинный и три кратких.
  • Один длинный и восемь кратких.

Если звуковая индикация отсутствует вовсе, значит существует неисправность БП.  

Compaq 

  • Один краткий сигнал — сбоев нет, загрузка будет продолжена.
  • Один длинный и один краткий — сбой контрольной суммы.
  • Два кратких сигнала — обнаружен глобальный сбой.
  • Один длинный и два кратких — сбой видеокарты.
  • Семь сигналов — сбой видеоадаптера AGP.
  • Один длительный сигнал — сбой ОЗУ.
  • Один краткий и два длинных — не удается загрузить ОЗУ.

IBM

  • Один краткий сигнал — система будет загружена, ошибок нет.
  • Один сигнал, черный монитор — сбой видеокарты.
  • Два кратких сигнала — ошибка видеосистемы.
  • Один длинный и один краткий — сбой материнки.
  • Один длинный и два кратких — ошибка видео Mono либо интерфейса CGA.
  • Один длинный и три кратких — сбой видео VGA.
  • Краткий повторный — неисправен БП.
  • Длинный сигнал — сбой БП.
  • Отсутствие звука — неисправен БП/динамик BIOS/материнка.

AST 

Краткие сигналы AST:

  • Один — неисправен ЦП.
  • Два — сбой контроллера клавиатуры.
  • Три — сбой контроллера клавиатуры.
  • Четыре — нарушена связь с устройством ввода.
  • Пять — сбой клавиатуры, поврежден модуль ввода.
  • Шесть — ошибка материнки.
  • Девять — не совпадает Checksum-значение
  • Десять — сбой таймера.
  • Одиннадцать — сбой чипсет.
  • Двенадцать — сбой питания. Ошибка исключительно в зоне энергонезависимой памяти.

Смешанные сигналы AST:

  • Один длинный — сбой нулевого канала в DMA-контроллере (DMA 0).
  • Один длинный и один краткий — сбой первого канала в DMA—контроллере (DMA 1).
  • Один длинный и два кратких — не удается завершить растровую развертку. Скорее всего ошибка связана со сбоем видеокарты.
  • Один длинный и три кратких — сбой памяти видеокарты.
  • Один длинный и четыре кратких — сбой видеокарты.
  • Один длинный и пять кратких — сбой на отрезке первых 64 килобайт памяти.
  • Один длинный и шесть  кратких — ошибка векторов.
  • Один длинный и семь кратких — сбой загрузки видеосистемы.
  • Один длинный и восемь кратких — сбой памяти видеокарты.

Phoenix 

  • Один сигнал (пауза) один сигнал (пауза) два сигнала — сбой ЦП.
  • Один сигнал (пауза) один сигнал (пауза) три сигнала — сбой памяти в области CMOS.
  • Один сигнал (пауза) один сигнал (пауза) четыре сигнала — не совпадает контрольная сумма BIOS.
  • Один сигнал (пауза) два сигнала (пауза) один сигнал — не удается обнаружить материнскую плату.
  • Один сигнал (пауза) два сигнала (пауза) два сигнала — сбой DMА-контроллера.
  • Один сигнал (пауза) два сигнала (пауза) три сигнала — сбой DMА-контроллера.
  • Один сигнал (пауза) три сигнала (пауза) один сигнал — сбой регенерации ОЗУ.
  • Один сигнал (пауза) три сигнала (пауза) три сигнала — сбой на участке первых 64 килобайт ОЗУ.
  • Один сигнал (пауза) три сигнала (пауза) четыре сигнала — сбой на участке первых 64 килобайт ОЗУ.
  • Один сигнал (пауза) четыре сигнала (пауза) один сигнал — неисправность материнской платы.
  • Один сигнал (пауза) четыре сигнала (пауза) два сигнала — неисправность ОЗУ.
  • Один сигнал (пауза) четыре сигнала (пауза) три сигнала — не отвечает таймер.
  • Один сигнал (пауза) четыре сигнала (пауза) четыре сигнала — сбой порта ввода/вывода.

Подробная расшифровка ошибок первых 64 килобайт на Phoenix 

Внимание! Неисправный бит указывается в шестнадцатеричной системе.

  • Два сигнала (пауза) один сигнал (пауза) один сигнал — сбой считывания нулевого бита на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) один сигнал (пауза) два сигнала — сбой считывания первого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) один сигнал (пауза) три сигнала — сбой считывания второго байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) один сигнал (пауза) четыре сигнала — сбой считывания третьего байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) два сигнала (пауза) один сигнал — сбой считывания четвертого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) два сигнала (пауза) два сигнала — сбой считывания пятого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) два сигнала (пауза) три сигнала — сбой считывания шестого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) два сигнала (пауза) четыре сигнала — сбой считывания седьмого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) три сигнала (пауза) один сигнал — сбой считывания восьмого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) три сигнала (пауза) два сигналп — сбой считывания девятого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) три сигнала (пауза) три сигнала — сбой считывания восьмого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) три сигнала (пауза) два сигнала — сбой считывания девятого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) три сигнала (пауза) три сигнала — сбой считывания десятого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) три сигнала (пауза) четыре сигнала — сбой считывания одиннадцатого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) четыре сигнала (пауза) один сигнал — сбой считывания двенадцатого  байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) четыре сигнала (пауза) два сигнала — сбой считывания триннадцатого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) четыре сигнала (пауза) три сигнала — сбой считывания четырнадцатого байта на отрезке первых 64 килобайт ОЗУ.
  • Два сигнала (пауза) четыре сигнала (пауза) четыре сигнала — сбой считывания пятнадцатого байта на отрезке первых 64 килобайт ОЗУ.

DMA, клавиатурный контроллер, другие сбои

  • Три сигнала (пауза) один сигнал (пауза) один сигнал — сбой DMA.
  • Три сигнала (пауза) один сигнал (пауза) два сигнала — сбой DMA.
  • Три сигнала (пауза) два сигнала (пауза) четыре сигнала — сбой клавиатурного контроллера.
  • Три сигнала (пауза) четыре сигнала (пауза) один сигнал — сбой инициализации монитора.
  • Три сигнала (пауза) четыре сигнала (пауза) два сигнала — сбой BIOS видеокарты.
  • Четыре сигнала (пауза) два сигнала (пауза) один сигнал — сбой таймера.
  • Четыре сигнала (пауза) два сигнала (пауза) два сигнала — сбоев нет. Тест пройден.
  • Четыре сигнала (пауза) два сигнала (пауза) три сигнала — сбой клавиатурного контроллера.
  • Четыре сигнала (пауза) два сигнала (пауза) четыре сигнала — сбой ЦП. Вход процессора в безопасный режим.
  • Четыре сигнала (пауза) три сигнала (пауза) один сигнала — сбой ОЗУ.
  • Четыре сигнала (пауза) три сигнала (пауза)  два сигнала — сбой таймера.
  • Четыре сигнала (пауза) три сигнала (пауза)  три сигнала — сбой таймер.
  • Четыре сигнала (пауза) четыре сигнала (пауза)  один сигнал — сбой порта.
  • Четыре сигнала (пауза) четыре сигнала (пауза)  два сигнала — сбой порта параллельного типа.
  • Четыре сигнала (пауза) четыре сигнала (пауза)  три сигнала — сбой сопроцессора.
  • Сиренообразный звук — возможна утечка электролита в видеокарте.
  • Безостановочный сигнал — неисправность ЦП.
  • Длинный цикличный сигнал — сбой материнки.

Проанализировав сигнал POST, при включении ПК, можно сразу узнать обо всех критических неполадках системы — даже без специальной диагностики. Особенное внимание обращайте на сигналы BIOS после апгрейда и установки новых комплектующих. Правильное толкование сигналов позволит вовремя обратить внимание на неисправность и заменить / отремонтировать проблемное оборудование, пока ещё это возможно.

Звуковые сигналы спикера компьютера. зачем он пищит при включении...

Звуковые сигналы спикера компьютера.

Все компьютеры имеют bios, который зашит в микросхеме на вашей системной плате компьютера. При запуске компьютера заложена в нем функция которая тестирует все устройства на готовность и правильную работу при запуске системы.
Если, что-то не проходит тест и выявлены ошибки, то программа издает сигналы, сигнализирует вам об этом издавая определенные звуки динамиком на системной плате. Иногда этого динамика не ставят, но разъемы для его подключения как правило всегда есть.
Если вы слышите при запуске один короткий сигнал, то это означает почти на всех компьютерах, что все в порядке.
Если иные звуки, то вам поможет таблица самых распространенных сигналов bios.

У каждой версии Bios свои сигналы.

Для того, чтоб узнать свою версию bios, просто зайдите в него и посмотрите:
Инструкция — Как зайти в BIOS.

Сигналы AWARD BIOS:

Сигналов нет. Неисправен или не подключен к материнской плате блок питания.
Непрерывный сигнал. Неисправен блок питания.
1 короткий. Ошибок не обнаружено.
2 коротких. Обнаружены незначительные ошибки. На экране монитора появляется предложение войти в программу CMOS Setup Utility и исправить ситуацию. Проверьте надежность крепления шлейфов в разъемах жесткого диска и материнской платы.
3 длинных. Ошибка контроллера клавиатуры. Перегрузите компьютер.
1 длинный+1 короткий. Проблемы с оперативной памятью.
1 длинный+2 коротких. Проблема с видеокартой — наиболее часто встречающаяся неисправность. Рекомендуется вытащить плату и заново вставить. Также проверьте подключение монитора.
1 длинный+3 коротких. Возникла ошибка инициализации клавиатуры. Проверьте качество соединения последней с разъемом на материнской плате.
1 длинный+9 коротких. Возникла ошибка при чтении данных из микросхемы постоянной памяти. Перегрузите компьютер или перепрошейте содержимое микросхемы.
1 длинный повторяющийся. Неправильная установка модулей памяти.
1 короткий повторяющийся. Проблемы с блоком питания. Попробуйте убрать накопившуюся в нем пыль.

Сигналы AMI (American Megatreds Inc) BIOS:

Сигналов нет. Неисправен или не подключен к материнской плате блок питания.
1 короткий. Ошибок не обнаружено.
2 коротких. Ошибка четности оперативной памяти. Перегрузите компьютер. Проверьте установку модулей памяти.
3 коротких. Возникла ошибка при работе первых 64 Кб основной памяти. Рекомендации аналогичны.
4 коротких. Неисправен системный таймер.
5 коротких. Неисправен центральный процессор.
6 коротких. Неисправен контроллер клавиатуры.
7 коротких. Неисправна материнская плата.
8 коротких. Неисправна видеопамять.
9 коротких. Ошибка контрольной суммы содержимого микросхемы BIOS.
10 коротких. Невозможно произвести запись в CMOS-память.
11 коротких. Неисправна внешняя cache-память (установленная в слотах на материнской плате).
1 длинный+2 коротких. Неисправна видеокарта.
1 длинный+3 коротких. Аналогично предыдущему.
1 длинный+8 коротких. Проблемы с видеокартой или не подключен монитор.

Сигналы Phoenix BIOS:

1-1-3. Ошибка записи/чтения данных CMOS.
1-1-4. Ошибка контрольной суммы содержимого микросхемы BIOS.
1-2-1. Неисправна материнская плата.
1-2-2. Ошибка инициализации контроллера DMA.
1-2-3. Ошибка при попытке чтения/записи в один из каналов DMA.
1-3-1. Ошибка регенерации оперативной памяти.
1-3-3. Ошибка при тестировании первых 64 Кб оперативной памяти.
1-3-4. Аналогично предыдущему.
1-4-1. Неисправна материнская плата.
1-4-2. Ошибка тестирования оперативной памяти.
1-4-3. Ошибка системного таймера.
1-4-4. Ошибка обращения к порту ввода/вывода.
3-1-1. Ошибка инициализации второго канала DMA.
3-1-2. Ошибка инициализации первого канала DMA.
3-1-4. Неисправна материнская плата.
3-2-4. Ошибка контроллера клавиатуры.
3-3-4. Ошибка тестирования видеопамяти.
4-2-1. Ошибка системного таймера.
4-2-3. Ошибка линии A20. Неисправен контроллер клавиатуры.
4-2-4. Ошибка при работе в защищенном режиме. Возможно, неисправен центральный процессор.
4-3-1. Ошибка при тестировании оперативной памяти.
4-3-4. Ошибка часов реального времени.
4-4-1. Ошибка тестирования последовательного порта. Может быть вызвана устройством, использующим данный порт.
4-4-2. Ошибка при тестировании параллельного порта. См. выше.
4-4-3. Ошибка при тестировании математического сопроцессора.

Есть и другие версии bios, но они встречаются не так часто.

Всем Удачи!

На что способен PC Speaker / Хабр

Известный теперь как «системный динамик», а то и просто «пищалка», PC Speaker появился на свет в 1981 году вместе с первым персональным компьютером IBM. Наследник нескольких поколений больших компьютеров для серьёзных дел, он с рождения был предназначен лишь для подачи простейших системных сигналов, и не мог достойно проявить себя в озвучивании главенствующих на домашнем рынке развлекательных программ. Сильно уступая звуковым чипам специализированных игровых систем, пропадая в тени вскоре появившихся продвинутых звуковых карт, он поддерживался многими разработчиками по остаточному принципу — как опция, выдающая хоть какой-нибудь звук при отсутствии лучших альтернатив. За нечастыми исключениями, через спикер проигрывались грубо упрощённые, полностью одноголосые версии мелодий, изначально сочинённых для гораздо более мощных устройств.

Музыкальный альбом «System Beeps» написан для PC Speaker с использованием той же базовой техники из старых игр, и согласно типичной формуле ретро-компьютерного около-демосценового творчества призван раскрыть многие годы оставшийся неисследованным потенциал этого простейшего звукового устройства. Собственно послушать результат и составить своё мнение об успешности данного мероприятия можно на Bandcamp или в видео ниже, а дальнейший текст углубляется в устройство спикера, историю проекта и способы достижения подобного результата для тех, кто хочет знать больше.


Устройство PC Speaker


Технически спикер представляет собой небольшой динамик или пьезоизлучатель, напрямую управляемый один из каналов системного таймера 8253, делящего входную тактовую частоту 1.19 МГц на задаваемое программой 16-битное значение. Для получения звука используется режим счёта, при котором таймер выдаёт меандр, то есть квадратную волну. Это небольшой, но всё же шаг вперёд по сравнению со звуком более ранних или бюджетных компьютеров типа Apple II и ZX Spectrum, где динамик подключался просто к однобитному порту ввода-вывода, а генерацией звука обязан был заниматься процессор. Использование канала таймера позволяет процессору просто выбрать нужную высоту звука и продолжать заниматься другими делами. Однако, процессор может программно синтезировать разнообразные по характеру звуки и настоящее многоголосие. PC Speaker же не может звучать громче или тише, мягче или ярче. Всё, на что он способен без постоянного вмешательства процессора — пищать или не пищать с заданной высотой звука одним и тем же неизменным тембром.

При проигрывании звуковых эффектов или музыки процессор обновляет состояние спикера — включает-выключает звук и изменяет его высоту — через некоторые промежутки времени. Как правило, эти изменения происходят в прерывании от нулевого канала того же системного таймера. Стандартно это 18.2 Гц, но игры нередко меняют это значение в сторону увеличения, в диапазоне от 30 до 200 гц, в зависимости от игры.

Эффективный диапазон доступных спикеру частот составляет примерно 100..2000 герц. Хотя можно задавать и другие частоты, за пределами указанного диапазона начинаются разнообразные проблемы. Во-первых, используемые динамики сами по себе плохо воспроизводят эти частоты. Во-вторых, выше 2000 гц начинается заметное отклонение возможных частот от частотами нот, а когда частота звука опускается ниже частоты обновления состояния спикера, обновления начинают срабатывать с запозданием — таймер не обновляет делитель частоты до тех пор, пока не закончится период счёта с предыдущим делителем.

Одноголосое многоголосие


Так как спикер способен воспроизводить только один звуковой канал или «голос», то есть только одну частоту в один момент времени, а для музыкальных целей этого очень мало, программисты и авторы музыки изыскивали способы получить мнимое или настоящее многоголосие. Можно выделить три основных подхода.

В первом подходе спикер генерирует звук как обычно, проигрыватель музыки обновляет частоту звука по таймеру с некоторой частотой и почти не нагружает процессор. Но при этом одновременно проигрываются два-три виртуальных канала с разными партиями, а значения частоты и включения-выключения звука по очереди выводятся с них на реальный спикер в каждом обновлении. Например, при двух каналах в первом обновлении выводится звук с первого виртуального канала, а в следующем — со второго. Подобным образом реализована полифония в играх Lotus III и Xenon 2. Так как зачастую один виртуальный канал играет партию баса, а другой мелодию, и эти партии имеют паузы, получается чередование либо далеко отстоящих друг от друга нот, либо чередование ноты и тишины, что приводит к постоянному треску, неприятному для уха. Уменьшить его можно за счёт отказа от пауз в партиях, как в Golden Axe, что существенно ухудшает выразительные средства (паузы в музыке важны настолько же, насколько важны ноты), либо за счёт отключения чередования каналов в моменты, когда в одном из них пауза, что даёт более чистое звучание одиночных нот, как в Stunts.

Второй подход можно наблюдать в играх Lucas Art, в которых качеству спикерных версий музыкального сопровождения традиционно уделялось больше внимания. Как правило в них звучит преимущественно одноголосая мелодия с редкими вставками разнесённых по времени басовых и ритмических элементов, прерываемая очень короткими и отрывистыми звуками партии второго, вспомогательного канала, например арпеджио или ударными. Иначе говоря, каналы чередуются не постоянно, а только в короткие моменты времени, когда второй голос заглушает первый. Примеры можно слышать в играх Monkey Island, Loom, Indiana Jones, и пожалуй самый продвинутый вариант аранжировки в Zak McKracken and the Alien Mindbenders. Это создаёт более убедительную и приятную для слуха иллюзию полифонии, хотя и довольно ограниченную.

В третьем подходе спикер не генерирует звук сам по себе, а используется как ЦАП, через который воспроизводится программно синтезируемый процессором звук или оцифровки. Этот процесс требует значительных вычислительных ресурсов, практически полностью загружая работой обычный 8086, поэтому метод обрёл популярность с распространением 80386. Качество проигрываемого таким образом звука невысоко и объективно уступает даже простейшему самодельному Covox из горсти резисторов, но на тот момент это было впечатляющим достижением, на одну из реализаций которого, RealSound, даже был оформлен патент и велось сублицензирование технологии.

Превращение спикера в ЦАП может быть выполнено простым включением-выключением звука при запрещённом счёте, что даёт простейший 1-битный ЦАП, либо использованием звукового канала таймера для генерации коротких импульсов различной длины на задаваемой системным таймером частоте (ШИМ), что превращает его в более качественный 6-битный ЦАП. Первый вариант можно слышать в многоканальной музыке в играх Fantasy World Dizzy и Hard Drivin', второй чаще применялся для воспроизведения музыки на основе сэмплов, например, в Pinball Dreams. Также он использовался в таких занимательных проектах прошлого, как TEMU и VSB — программных эмуляторах трёхканального звукового чипа Tandy и цифровой части Sound Blaster, позволяющих в отсутствие этих устройств выводить предназначенный им звук через спикер (требуется 386SX и выше).

Альбом и история создания


Изначально плана делать именно музыкальный альбом у меня не было. Был творческий поиск аудиовизуального образа для проекта игры со стилизацией под псевдографические игры эпохи XT, и для максимального аутентичного образа возникла идея написать не просто стилизацию, а музыку, действительно возможную на PC Speaker, следующую классической музыкальной формуле 8-битных игр — зацикленные треки продолжительностью около минуты. Использовать цифровой звук или программный синтез мне не хотелось, так как результат едва ли соответствовал бы духу эпохи, и не обладал бы особым характером. Одноголосые же мелодии были предметом моего интереса со времён ZX Spectrum и знакомства с играми Ping Pong, Stardust, Score 3020. И раз уж выдался такой случай, захотелось попробовать написать именно одноголосую музыку, но получить какой-то необычный результат за счёт аранжировки — заманчивый вызов для композитора.

Работа над музыкой увлекла даже больше, чем работа над игрой. В процессе горения идеей был разработан и опубликован VSTi плагин PCSPE, сделано несколько набросков мелодий и пробных кавер-версий старых треков, чтобы развить технику работы с одноголосыми аранжировками и найти общие решения по звуку. Позже стало ясно, что результат всё же не соответствует видению игрового проекта, да и сам проект постепенно ушёл в стол. Но музыкальный материал остался, а услышанный потенциал наводил на мысль, что было бы неплохо по-быстрому оформить его в виде небольшого отдельного сборника мелодий для MS-DOS, хотя бы в качестве демонстрации возможностей плагина.

По-быстрому не получилось, дело затянулось, несколько треков переросло в несколько десятков, сборник случайных мелодий эволюционировал в тематический альбом, планы менялись, сроки сдвигались. В итоге завершение задумки заняло полтора года, с июля 2017 до января 2019 года. За это время я успел сделать AONDEMO и написать для него трек (звуковое железо АОН практически повторяет PC Speaker), а также поучаствовать в разработке звукового кода и утилит для игры Planet X3, куда в качестве титульного трека также вошёл самый первый написанный для сборника трек.

Завершение проекта постоянно откладывалось, в него добавлялись всё новые и новые треки, пока все исходные идеи и наброски не были полностью исчерпаны. В конечном виде альбом включил 23 трека, разделённых на три группы.

Сторона A содержит 16 основных треков, более-менее связанных общей темой и звучанием. По большей части они были сочинены специально для альбома, с нуля или на основе старого материала, который хорошо подошёл для одноголосой аранжировки. Принцип отбора в эту группу был в оригинальности и более удачной, как мне показалось, аранжировке в выбранных ограничениях, по сравнению с прочими треками.

Сторона B включила 6 треков, предположительно менее удачных, которые являлись кавер-версиями моих старых работ для других платформ, или были основаны на более-менее проработанном старом материале, изначально предполагавшем совсем другие форматы — от XM-модуля до поп-панк песни. Сюда же был включён трек, уже засветившийся в Planet X3.

Сторона X включила трек из AONDEMO с минимальными изменениями. Такое отделение сделано в качестве шутки юмора.

Сам альбом выполнен в виде программы-проигрывателя для MS-DOS 3.3 и выше, которая запустится на IBM PC XT при наличии хотя бы 256КБ ОЗУ и видеоадаптера CGA. Так как оригинальная карта CGA подвержена так называемому «снегу», визуальному артефакту при попытке обновления экрана во время хода луча по растру, программа представлена в двух версиях — sbx.com без эффекта анализатора спектра, но и без снега, и sb.com с таковым эффектом. Для более плавной отрисовки анализатора желательно иметь процессор помощнее. Разумеется, боле современные компьютеры также сгодятся, например, с загрузкой FreeDOS с USB, равно как и эмуляция DosBox.

Музыкальная составляющая


В альбоме не применяется никаких программных трюков, типа синтеза звука силами процессора и использования спикера в качестве ЦАП. Технология самая традиционная — генерируемая системным таймером строго монофоническая квадратная волна, с обновлением высоты звука с относительно большой, но не из ряда вон выходящей частотой 120 Гц, что вполне по силам классическому XT и оставляет достаточно процессорного времени для выполнения других задач, помимо проигрывания музыки.

Весь секрет в особом подходе к написанию мелодий и аранжировок. Здесь очень помог предшествующий опыт в разных смежных областях — опыт написания классического чиптюна для звуковых чипов прошлого, в котором часто приходится совмещать несколько партий в одном канале методом чередования и наложения; опыт разработки звуковых движков для игр на старых компьютерах, где звуковые эффекты заимствуют каналы у музыки, заглушая её; а также опыт сочинения оригинальной музыки для дисковода. Как выяснилось позже, по сути я развивал подход к спикерной музыке, применявшийся Lucas Art, хотя на момент начала работы слышал только тему из Monkey Island.

Одна из интересных проблем, которую понадобилось решить практически в начале работы — инструменты ударных и перкуссии. В чиптюне они как правило делаются с применением шумового канала, но возможности проигрывать шум на спикере при частоте обновления порядка десятков-сотен герц нет.

Бас-бочка и томы неплохо получаются и без шума, в виде простых слайдов вниз с разной скоростью и длительностью — бочка побыстрее и покороче от низкой ноты, томы помедленнее и подлиннее от более высоких нот. А вот главный ударный инструмент, малый (рабочий) барабан, в виде простого слайда звучит неубедительно и не прорезает загруженный другими элементами микс. Здесь сработал трюк, часто встречающийся в имитации рабочего барабана на SID и AY-3-8910 — кратковременное выключение звука в начале слайда, создающее эффект дроби. Это вносит в звучание достаточное отличие от других перкуссионных инструментов, а также улучшает заметность барабана в миксе. Особенно это проявляется в связке со свойственными реальному спикеру резонансами.

По причине отсутствия шума пришлось отказаться от любых хэтов. Для более разнообразного и интересного звучания инструменты ударных различаются между треками. Где-то они протяжённее, где-то отрывистее, звучат выше или ниже, иногда присутствуют дополнительные элементы.

В процессе работы над музыкой были выработаны универсальные приёмы, пригодные для написания одноголосых аранжировок для любых монофонических устройств, не имеющих управления громкостью, будь то музыкальная открытка, ЧПУ станок или катушка Тесла. Среди них:

  • Особенность человеческого слуха, когда предположительно более громкий звук маскирует более тихие звуки. Например, удар барабана или нота центральной мелодии — они отвлекают на себя внимание и делают малозаметным кратковременное пропадание остальных партий.
  • Аранжировка, в которой присутствует достаточно пауз между нотами. В особенности это касается вступительных частей. В эти моменты составляющие хорошо слышны по отдельности и получают возможность запомниться, чтобы по ходу развития трека, когда аранжировка станет плотнее, мозг продолжал опознавать наличие этих элементов, даже если они стали едва слышны в миксе.
  • Сочинение мелодий, в которых значительная часть нот приходится на слабую долю, а также смещение начала нот относительно сетки метра. Это позволяет нотам мелодии занимать места пауз в аккомпанименте, таким образом уменьшая наложение партий. В частности, это позволяет выиграть немного места для нот басовых партий, которым важно попадать в сильную долю. Это придаёт мелодиям сильное синкопирование, создаёт ощущение фанковости, что идёт на пользу их интересности.
  • Обычные чиптюновые арпеджио на разной скорости, включая очень быстрые арпеджио из двух нот на частоте чередования 120 гц. Вариации в скорости позволяют создавать элементы аранжировки с различным звучанием, что очень помогает при отсутствии тембральных выразительных средств — ведь все ноты имеют звучание одной и той же квадратной волны.
  • Повторяющиеся паузы в протяжённых звуках, например в солирующем инструменте, в которых слышны другие виртуальные каналы. Как правило такие инструменты начинаются с непрерывного звука, затем появляются паузы и их частота и длина постепенно увеличиваются, что является своего рода имитацией спадающей громкости.
  • Вариации длительности нот, включая очень короткие, для имитации разницы в громкости. Используется для подчёркивания пульсации в басовых партиях, где ноты, приходящиеся на сильную долю имеют увеличенную длительность, а также для создания эффекта эхо — когда партия с нотами одной длительности вторит себе, но с нотами существенно меньшей длительности.

Техническая составляющая


Другой ключевой момент в работе над альбомом — применение современных инструментов, делающих её значительно более комфортной и эффективной. Это привычная мне современная цифровая студия Reaper (программа, аналогичная FL Studio, Cubase и подобным) и набор самостоятельно разработанных VST-плагинов.

Подобный подход является экспериментальным, совершенно нетрадиционным для создания «тру-чиптюна», то есть музыки, предназначенной для воспроизведения на настоящем устройстве — обычно для этого применяются специальные программы-трекеры либо ручное набивание музыкальных данных. Разумеется, тот же самый результат можно получить и такими, более классическими средствами (что и было сделано для Planet X3), но это требует больше усилий и регулярного отвлечения от творческого процесса на чисто технические моменты.


Специально для создания спикерной музыки был разработан VSTi плагин PCSPE. Он эмулирует железо PC Speaker, позволяя сразу слышать близкий к реальному результат, а также реализует систему чиптюновых инструментов, подобные тем, что используются в трекерах для различных звуковых чипов. Огибающие виртуальной громкости (приоритета), арпеджио и изменения высоты звука задаются в виде строк текста с очень простым форматом, напоминающим язык музыкального программирования MML (родственник строк букв в операторе PLAY в BASIC). С помощью этих огибающих можно задавать, например, различные звуки ударных инструментов, или солирующий инструмент с постепенно нарастающим вибрато.

Но главной задачей плагина является автоматическое сведение нескольких входных MIDI-дорожек с разными партиями в конечный монофонический трек. Упомянутая виртуальная громкость инструментов является основой системы приоритетов. В один момент времени (период обновления состояния спикера) всегда звучит только инструмент с наибольшей текущей громкостью. Например, инструмент баса имеет громкость 2, мелодии — 6, а инструменты ударных имеют громкость 8 — значит, ноты мелодии будет заглушать ноты баса, а ударные будут заглушать и то и другое. Таким образом несколько одновременно звучащих музыкальных партий сводится в один канал спикера.

Плагин имеет функцию экспорта для дальнейшего использования музыки в реальных программах. Используется принцип лога: плагин всегда знает, какая частота выдаётся на эмулируемый спикер в каждый момент времени, и сколько времени проходит между её изменениями. При включении функции экспорта и проигрывании трека от начала до конца эти данные в реальном времени записываются в файл выбранного формата. Далее для воспроизведения музыки достаточно взять эти данные из файла и выводить на реальный спикер с требуемыми задержками.

Типичное чиптюновое арпеджио можно создавать в PCSPE классическим способом, соответствующей огибающей, задающей последовательность смещений в полутонах относительно базовой ноты. Но это требует постоянно переключать инструменты и держать в уме соответствие между инструментами и получаемыми аккордами. Проделывать это в современных DAW довольно неудобно.

Гораздо более удобный способ реализует другой мой VSTi плагин — арпеджиатор ChipArp, специально предназначенный для написания чиптюна и стилизаций. Он автоматически преобразует традиционные полифонические аккорды из входной MIDI-дорожки в арпеджио с заданными параметрами в выходной MIDI-дорожке, причём делает это на лету — можно играть аккорды на MIDI-клавиатуре и сразу же слышать арпеджио. В отличие от арпеджиаторов для современной электронной музыки, постоянно перезапускающих ноту с начала, этот плагин реализует арпеджио в виде питч-бендов относительно самой низкой ноты аккорда. Таким образом, арпеджио не нарушает протяжённое во времени звучание инструментов. Для полноценной работы этого плагина требуется поддержка установки широкого диапазона бендов и мгновенной реакции на бенды в используемом плагине синтезатора, что встречается нечасто, но все мои синтезаторы это поддерживают.

PCSPE и эмуляторы типа DosBox выдают идеализированную квадратную волну, заметно отличающуюся по звучанию от реального устройства. Крохотные системные динамики подвержены сильным резонансам и искажениям АЧХ, подчёркивающим транзиенты, то есть моменты включения и выключения звука или резкой смены частоты. В частности, это делает ударные на реальном спикере гораздо более выраженными в миксе, т.е. «пробивными». Для контроля и обращения подобной особенности на пользу аранжировке использовался бесплатный плагин NadIR и собственноручно записанные импульсы нескольких маленьких динамиков — аналогично тому, как для цифровой записи гитар используют импульсы реальных гитарных кабинетов.

Материалы


Проект был опубликован под открытой лицензией CC-BY, включая саму музыку, исходники плеера и проекты всех треков для Reaper. Таким образом, любой желающий волен делать любые производные продукты, как относительно музыкальной составляющей, так и кода. Все использовавшиеся при разработке инструменты также доступны вместе с исходниками:

Программа-проигрыватель с музыкой
Исходники программы и проекты для Reaper
Плагин PCSPE с исходниками
Плагин ChipArp с исходниками
Импульсы динамиков

Что такое динамик?

Обновлено: 13.11.2018 компанией Computer Hope

Динамик может относиться к любому из следующего:

1. Громкоговоритель - это термин, используемый для описания пользователя, который дает голосовые команды программе.

2. Компьютерный динамик - это аппаратное устройство вывода, которое подключается к компьютеру для генерации звука. Сигнал, используемый для воспроизведения звука из динамика компьютера, создается звуковой картой компьютера.На рисунке показана 2.1-канальная мультимедийная акустическая система Harman Kardon Soundsticks III .

Как работают колонки?

Громкоговорители состоят из конуса, стальной катушки, магнита и корпуса (корпуса). Когда динамик получает электрический вход от устройства, он посылает ток, заставляя его двигаться вперед и назад. Затем это движение вызывает вибрацию внешнего конуса, генерируя звуковые волны, улавливаемые нашими ушами.

Эволюция компьютерной акустики

Когда компьютеры были первоначально выпущены, они имели встроенные в шасси встроенные динамики, которые генерировали серию различных тонов и сигналов.Первый внутренний компьютерный динамик был изобретен IBM в 1981 году и воспроизводил базовый звук низкого качества.

По мере развития технологий встроенные динамики переместились в монитор компьютера и приобрели способность воспроизводить голоса, музыку и другие звуковые эффекты. Громкоговорители монитора находились внизу слева и внизу справа на передней панели монитора. Однако у некоторых мониторов динамики встроены в левую и правую стороны монитора.

Когда стали популярны компьютерные игры, цифровая музыка и другие носители, производители начали изготавливать внешние динамики, обеспечивающие более качественный звук и улучшенные басы.Первый внешний компьютерный динамик был изобретен Абинаваном Пураккидасом в 1991 году и до сих пор остается доминирующим типом динамиков для компьютеров.

Рейтинг докладчика

Динамики имеют частотную характеристику , полное гармоническое искажение и Вт .

  • Частотная характеристика - это скорость измерения высоких и низких частот звуков, производимых динамиком.
  • THD ( полное гармоническое искажение ) - это величина искажения, создаваемого усилением сигнала.
  • Вт - это мощность, доступная для динамиков.

Зачем нужны компьютерные колонки?

Внешние динамики подключаются к компьютеру или другому устройству, чтобы усилить звук (сделать его громче), добавить басов с помощью сабвуфера или создать объемный звук. Если у вас есть ноутбук, смартфон или другое устройство со встроенными динамиками, вам не нужны внешние динамики, если вам не нужны более громкие звуки, больше басов или объемный звук.

3. На материнской плате компьютера динамик соответствует внутреннему динамику .

Аксессуар, Устройство вывода звука, Частота, Параметры оборудования, Внутренний динамик, Мини-штекер, Устройство вывода, Умный динамик, Звуковая карта, Условия звука, Студийный монитор, Сабвуфер, Твитер, Ватт

.

Определение динамиков

Динамики - одно из наиболее распространенных устройств вывода, используемых в компьютерных системах. Некоторые колонки предназначены специально для работы с компьютерами, а другие можно подключить к любой звуковой системе. Независимо от конструкции, динамики предназначены для воспроизведения звука, который может слышать слушатель.

Динамики - это преобразователи, преобразующие электромагнитные волны в звуковые. Громкоговорители принимают аудиовход от такого устройства, как компьютер или аудиоприемник.Этот вход может быть как в аналоговой, так и в цифровой форме. Аналоговые колонки просто усиливают аналоговые электромагнитные волны в звуковые волны. Поскольку звуковые волны производятся в аналоговой форме, цифровые динамики должны сначала преобразовать цифровой вход в аналоговый сигнал, а затем генерировать звуковые волны.

Звук, производимый динамиками, определяется частотой и амплитудой. Частота определяет, насколько высока или низка высота звука. Например, голос певца-сопрано издает высокочастотные звуковые волны, а бас-гитара или бас-барабан генерируют звуки в низкочастотном диапазоне.Способность акустической системы точно воспроизводить звуковые частоты - хороший показатель того, насколько чистым будет звук. Многие динамики включают несколько диффузоров для разных частотных диапазонов, что помогает воспроизводить более точные звуки для каждого диапазона. Двухполосные динамики обычно имеют высокочастотный и среднечастотный динамик, а трехполосные динамики - высокочастотный динамик, среднечастотный динамик и сабвуфер.

Амплитуда или громкость определяется изменением давления воздуха, создаваемым звуковыми волнами динамиков.Таким образом, когда вы включаете громкоговорители, вы фактически увеличиваете давление воздуха создаваемых ими звуковых волн. Поскольку сигнал, создаваемый некоторыми источниками звука, не очень высокий (например, звуковая карта компьютера), его, возможно, необходимо усилить динамиками. Следовательно, большинство внешних компьютерных динамиков имеют усиление, то есть они используют электричество для усиления сигнала. Динамики, которые могут усиливать входящий звук, часто называют активными динамиками. Обычно вы можете определить, активен ли динамик, если у него есть регулятор громкости или он может быть подключен к электрической розетке.Динамики, не имеющие внутреннего усиления, называются пассивными динамиками. Поскольку эти динамики не усиливают аудиосигнал, они требуют высокого уровня входного аудиосигнала, который может воспроизводиться усилителем звука.

Динамики обычно поставляются парами, что позволяет воспроизводить стереозвук. Это означает, что левый и правый динамики передают звук по двум совершенно отдельным каналам. При использовании двух динамиков музыка звучит намного естественнее, поскольку наши уши привыкли слышать звуки слева и справа одновременно.Системы объемного звучания могут включать от четырех до семи динамиков (плюс сабвуфер), что создает еще более реалистичное впечатление.

Обновлено: 27 февраля 2010 г.

TechTerms - Компьютерный словарь технических терминов

Эта страница содержит техническое определение динамиков. Он объясняет в компьютерной терминологии, что означают спикеры, и является одним из многих терминов, связанных с оборудованием в словаре TechTerms.

Все определения на веб-сайте TechTerms составлены так, чтобы быть технически точными, но также простыми для понимания.Если вы найдете это определение Speakers полезным, вы можете сослаться на него, используя приведенные выше ссылки для цитирования. Если вы считаете, что термин следует обновить или добавить в словарь TechTerms, напишите в TechTerms!

.

Почему у моего компьютера не работают динамики?

Обновлено: 30.11.2020 компанией Computer Hope

На этой странице вы найдете информацию о том, что делать, если вы не слышите звук из динамиков вашего компьютера. Приведенные ниже разделы по устранению неполадок следует выполнять по порядку, поскольку они помогут вам определить проблему в процессе устранения.

Объем выпуска

Если у вас возникли проблемы с громкостью звука на вашем компьютере, следующие действия могут помочь вам решить проблему.

Настольные колонки выключены

Этот шаг может показаться тривиальным, но решение проблем лучше всего работает, когда вы начинаете с основ. Убедитесь, что ручка громкости на динамиках повернута в нужное положение для воспроизведения звука. Каждая пара динамиков с регуляторами увеличивает громкость, поворачивая ее слева направо, иначе известный как по часовой стрелке.

Динамики ноутбука выключены

Если вы используете портативный компьютер без подключенных внешних динамиков, убедитесь, что громкость увеличена с помощью элементов управления на клавиатуре.Регуляторы громкости могут быть кнопками (показаны на рисунке) или вторичной функцией другой клавиши, обозначенной синим текстом. Чтобы активировать эти клавиши, одновременно удерживайте клавишу Fn на вторичной функциональной клавише.

Контрольные динамики выключены

В некоторые мониторы встроены динамики. Вам нужно будет либо использовать кнопки на мониторе, либо отрегулировать громкость в настройках Windows, либо использовать клавиатуру. Поскольку все производители мониторов имеют разные кнопки и элементы управления, пожалуйста, обратитесь к руководству пользователя для конкретных шагов.

Убедитесь, что громкость программного обеспечения также увеличена

Важным аспектом звука на компьютере с внешними динамиками является то, что он в основном управляется программным обеспечением. Например, если громкость понижена или отключена в настройках программного обеспечения, не имеет значения, насколько высоко включены внешние динамики. Динамики не воспроизводят звук. Поэтому пользователи должны убедиться, что настройки звука в программном обеспечении включены правильно.

Без звука на

Другой распространенной ошибкой является случайное отключение звука на клавиатуре.Чтобы проверить, включено ли отключение звука, найдите в правой нижней части панели задач символ, напоминающий динамик со знаком «нет».

Колонки подключены неправильно

Некоторые проблемы со звуком могут быть вызваны неправильно подключенными динамиками. Чтобы убедиться, что динамики подключены правильно, выполните следующие действия.

Портативные компьютеры

Если вы устраняете неисправность портативного компьютера, пропустите этот шаг, так как вы не можете проверить подключения динамиков портативного компьютера.

Внешние настольные колонки

Звуковые устройства, подключенные к компьютеру, имеют разные кабели и поэтому используют разные порты.Сначала проверьте, подключен ли кабель динамика к звуковой карте на задней панели компьютера. Как видно на рисунке, звуковая карта имеет несколько разъемов. Громкоговорители должны быть подключены к разъему Line Out, который обычно обозначается изображением звуковых волн со стрелкой, указывающей на него. Сам домкрат обычно зеленого цвета. Если динамики подключаются через USB, подключите их к любому из портов USB.

Наконечник

Даже если динамики работали в прошлом, проверьте соединение, так как кабели нередко отсоединяются или выдергиваются с места.

Убедитесь, что кабель питания подсоединен к задней части правого динамика или, в некоторых случаях, к сабвуферу. У большинства динамиков есть небольшой светодиодный индикатор, указывающий, включен ли динамик. После того, как вы включили динамики (обычно с помощью кнопки или перемещая ручку регулировки громкости слева направо), поищите свет. Если светодиода не видно или на динамики все еще не подается питание, и вы проверили подключения питания, возможно, у вас неисправный источник питания.

Устройство воспроизведения по умолчанию в Windows

Если на вашем компьютере установлена ​​операционная система Windows, убедитесь, что правильное устройство воспроизведения установлено в качестве устройства по умолчанию для вывода звука.Если в качестве устройства по умолчанию установлено неправильное устройство воспроизведения, звук не выходит из ожидаемого устройства (например, из динамиков или наушников).

  1. Откройте панель управления.
  2. Щелкните или дважды щелкните значок Оборудование и звук или Звук .
  3. В Windows XP и более ранних версиях щелкните Управление аудиоустройствами в разделе Звук .
  4. В окне "Звук" на вкладке Воспроизведение найдите запись для динамиков, подключенных к вашему компьютеру.
  5. Щелкните правой кнопкой мыши запись динамика и выберите Установить как устройство по умолчанию .
  6. Нажмите ОК в нижней части окна «Звук», чтобы сохранить изменения настроек.

Настройка динамиков Windows

Если вы используете Microsoft Windows, проверьте правильность настройки динамика, выполнив следующие действия.

  1. Откройте панель управления.
  2. Выберите Оборудование и звук или Звук в окне Панели управления.
  3. В Windows XP и более ранних версиях щелкните Управление аудиоустройствами в разделе Звук .
  4. На вкладке «Воспроизведение » выберите динамики и нажмите кнопку « Настроить ».
  5. Если динамики по-прежнему не работают после их настройки и тестирования, дважды щелкните динамики на вкладке «Воспроизведение», чтобы открыть Свойства динамика .
  6. Проверьте все настройки, а затем Проверьте на вкладке Advanced .
  7. После проверки всех настроек и внесения любых изменений, нажмите Применить , затем ОК в каждом из соответствующих окон перед их закрытием.

Поврежденные системные файлы Windows

Системные файлы Windows могут быть повреждены по любому количеству причин. Если системные файлы, отвечающие за вывод звука, будут повреждены, компьютер может перестать воспроизводить любой звук.

Если компьютер издавал звук недавно, но не сейчас, вы можете попытаться восстановить Windows до предыдущей точки , когда звук работал.Если поврежденные системные файлы Windows вызывают проблему со звуком, восстановление Windows до момента, когда звук работал, должно решить проблему. Для получения дополнительной информации см .: Как восстановить Windows до более ранней копии.

Наконечник

Перед активацией точки восстановления Windows обязательно сделайте резервную копию важных документов.

Встроенный или встроенный звук отключен

Если ваш компьютер имеет встроенный или встроенный звук, возможно, он отключен в BIOS. Войдите в BIOS и найдите запись для встроенного звука.Он может быть расположен в меню с названием, похожим на Integrated Peripherals или Onboard Devices , или в меню Advanced .

После того, как вы нашли интегрированную аудиозапись, проверьте, установлено ли для нее значение Включено или Отключено . Если установлено значение Disabled , измените настройку на Enabled . Перезагрузите компьютер и проверьте звук.

Плохая звуковая карта

Если проблема не связана с программным обеспечением, скорее всего, это проблема с оборудованием.Как и любой другой аппаратный компонент компьютера, устройство, воспроизводящее звук, может выйти из строя. Убедитесь, что звуковая карта компьютера работает правильно, подключив к компьютеру еще одну пару динамиков или наушников.

Запись

Не тестируйте звук через игру или другую программу. Вместо этого посмотрите, работает ли компакт-диск или звуковой файл. В программе или игре могут быть проблемы со звуком, не связанные со звуковой картой.

Если другая пара динамиков или наушников также не работает, вероятно, возникла проблема со звуковой картой.См. Следующую страницу для помощи по устранению неполадок.

Плохие динамики

Наконец, если ни одна из приведенных выше рекомендаций не решила проблему, но подключение другой пары динамиков или наушников не помогло, динамики плохие. Мы рекомендуем вам обратиться к производителю динамиков или компьютера для замены, если они все еще находятся на гарантии. В противном случае вы можете купить новую пару динамиков и подключить их к компьютеру.

.

Что такое компьютер?

Обновлено: 30.12.2019 компанией Computer Hope

Компьютер - это программируемое устройство, которое хранит, извлекает и обрабатывает данные. Термин «компьютер» был первоначально дан людям ( человеческих компьютеров, ), которые выполняли числовые вычисления с использованием механических калькуляторов, таких как счеты и логарифмическая линейка. Позднее этот термин получил название механическое устройство, поскольку оно начало заменять человеческие компьютеры. Современные компьютеры - это электронные устройства, которые принимают данные (вводят), обрабатывают эти данные, производят вывод и хранят (хранят) результаты.

Обзор компьютера

Ниже приведено изображение компьютера с каждым из основных компонентов. На картинке ниже вы можете увидеть настольный компьютер, плоский дисплей, динамики, клавиатуру и мышь. Мы также пометили каждое из устройств ввода и вывода.

История компьютера

Первый цифровой компьютер и то, что большинство людей считают компьютером, называлось ENIAC. Он был построен во время Второй мировой войны (1943-1946) и предназначался для автоматизации вычислений, выполняемых человеческими компьютерами.Выполняя эти вычисления на компьютере, они могли бы достичь результатов намного быстрее и с меньшим количеством ошибок.

Ранние компьютеры, такие как ENIAC, использовали электронные лампы, были большими (иногда размером с комнату) и использовались только на предприятиях, в университетах или в государственных учреждениях. Позже в компьютерах стали использоваться транзисторы и более мелкие и дешевые детали, которые позволили обычному человеку владеть компьютером.

Как сегодня используются компьютеры?

Сегодня компьютеры делают работу, которая раньше была сложной, намного проще.Например, вы можете написать письмо в текстовом редакторе, отредактировать его в любое время, проверить орфографию, распечатать копии и отправить кому-нибудь по всему миру за секунды. На все эти действия у кого-то ушли бы дни, если не месяцы, раньше. Кроме того, эти примеры - небольшая часть того, что могут делать компьютеры.

Какие компоненты составляют настольный компьютер?

Сегодняшние настольные компьютеры имеют некоторые или все перечисленные ниже компоненты (оборудование) и периферийные устройства. По мере развития технологий более старые технологии, такие как дисковод гибких дисков и Zip-дисковод (оба показаны ниже), больше не требуются и не включаются.

Какие детали необходимы для работы компьютера?

Компьютер не требует всех компонентов, упомянутых выше. Однако компьютер не может функционировать, не имея как минимум перечисленных ниже деталей.

Однако, если бы у вас был компьютер только с минимальным набором компонентов, указанным выше, вы не смогли бы связаться с ним, пока не подключили хотя бы одно устройство ввода (например, клавиатуру). Кроме того, чтобы вы могли видеть, что происходит, вам понадобится хотя бы одно устройство вывода (например,г., монитор).

Наконечник

После того, как компьютер настроен, запущен и подключен к сети, вы можете отключить клавиатуру и монитор и подключиться удаленно. Фактически, именно так используется большинство серверов и компьютеров в центрах обработки данных.

Компьютерные соединения

Все компьютеры имеют разные типы подключений. Пример задней панели персонального компьютера и краткое описание каждого подключения можно найти на нашей странице подключений к компьютеру.

Виды компьютеров

Говоря о компьютере или «ПК», вы обычно имеете в виду настольный компьютер, который можно найти дома или в офисе.Однако сегодня границы того, что делает компьютер, стираются. Ниже приведены все различные примеры того, что сегодня считается компьютером.

На рисунке выше показаны несколько типов компьютеров и вычислительных устройств, а также пример их различий. Ниже представлен полный список компьютеров прошлого и настоящего.

Кто делает компьютеры?

Сегодня существует два типа компьютеров: ПК (IBM-совместимые) и Apple Mac. Несколько компаний, которые производят и производят ПК, и если у вас есть все необходимые детали для компьютера, вы даже можете построить собственный ПК.Однако, что касается Apple, только Apple разрабатывает и производит эти компьютеры. См. Нашу страницу компьютерных компаний, где приведен список компаний (OEM), которые производят и производят компьютеры.

Barebone, Compute, Семейство компьютеров, Computer Hope, Подключение, Условия оборудования, Домашний компьютер, Ноутбук, Мой компьютер, ПК, Установка, Сервер, Системный блок

.

Основы работы с компьютером: что такое компьютер?

Урок 2: Что такое компьютер?

/ ru / computerbasics / about-this-tutorial / content /

Что такое компьютер?

Компьютер - электронное устройство, которое манипулирует информацией или данными. Он имеет возможность хранить , получать и обрабатывать данных. Возможно, вы уже знаете, что вы можете использовать компьютер для документов типа , для отправки электронной почты , для игр и для просмотра веб-страниц .Вы также можете использовать его для редактирования или создания таблиц , презентаций и даже видео .

Посмотрите видео ниже, чтобы узнать о различных типах компьютеров.

Ищете старую версию этого видео? Вы все еще можете просмотреть это здесь.

Аппаратное обеспечение и программное обеспечение

Прежде чем говорить о разных типах компьютеров, давайте поговорим о двух вещах, общих для всех компьютеров: аппаратных средствах и программных .

  • Аппаратное обеспечение - это любая часть вашего компьютера, имеющая физическую структуру , например клавиатуру или мышь. Он также включает в себя все внутренние части компьютера, которые вы можете увидеть на изображении ниже.
  • Программное обеспечение - это любой набор инструкций , который сообщает аппаратному обеспечению , что делать и , как это делать . Примеры программного обеспечения включают веб-браузеры, игры и текстовые процессоры.

Все, что вы делаете на своем компьютере, зависит как от оборудования, так и от программного обеспечения.Например, прямо сейчас вы можете просматривать этот урок в веб-браузере (программное обеспечение) и с помощью мыши (аппаратно) переходить от страницы к странице. Узнавая о разных типах компьютеров, спросите себя об различиях в их оборудовании. По мере прохождения этого руководства вы увидите, что разные типы компьютеров также часто используют разные типы программного обеспечения.

Какие бывают типы компьютеров?

Когда большинство людей слышат слово компьютер , они думают о персональном компьютере , таком как настольный компьютер или ноутбук .Однако компьютеры бывают разных форм и размеров и выполняют множество различных функций в нашей повседневной жизни. Когда вы снимаете наличные в банкомате, просматриваете продукты в магазине или пользуетесь калькулятором, вы пользуетесь своего рода компьютером.

Настольные компьютеры

Многие люди используют настольных компьютеров на работе, дома и в школе. Настольные компьютеры предназначены для размещения на столе и обычно состоят из нескольких различных частей, включая корпус компьютера , монитор , клавиатуру и мышь .

Портативные компьютеры

Второй тип компьютеров, с которыми вы, возможно, знакомы, - это портативный компьютер , обычно называемый портативным компьютером. Ноутбуки - это компьютеры с батарейным питанием, которые на более портативны, чем настольные компьютеры, что позволяет использовать их практически где угодно.

Планшетные компьютеры

Планшетные компьютеры или планшетов - это карманные компьютеры, которые даже более портативны, чем ноутбуки. Вместо клавиатуры и мыши в планшетах используется сенсорный экран для набора текста и навигации. iPad - это пример планшета.

Серверы

Сервер - это компьютер, который передает информацию другим компьютерам в сети. Например, всякий раз, когда вы пользуетесь Интернетом, вы смотрите на что-то, что хранится на сервере. Многие предприятия также используют локальные файловые серверы для внутреннего хранения файлов и обмена ими.

Компьютеры прочие

Многие современные электронные устройства представляют собой специализированных компьютеров , хотя мы не всегда думаем о них таким образом.Вот несколько распространенных примеров.

  • Смартфоны : Многие сотовые телефоны могут делать то же, что и компьютеры, в том числе просматривать Интернет и играть в игры. Их часто называют смартфонами .
  • Носимые устройства : Носимые устройства - это общий термин для группы устройств , включая фитнес-трекеры и умные часы , которые предназначены для ношения в течение дня. Эти устройства часто называют носимыми
.

Simple English Wikipedia, бесплатная энциклопедия

Компьютер - это машина, которая принимает данные в качестве входных данных, обрабатывает эти данные с помощью программ и выводит обработанные данные в качестве информации. Многие компьютеры могут хранить и извлекать информацию с помощью жестких дисков. Компьютеры могут быть соединены вместе в сети, что позволяет подключенным компьютерам обмениваться данными друг с другом.

Двумя основными характеристиками компьютера являются: он реагирует на конкретный набор инструкций четко определенным образом и может выполнять предварительно записанный список инструкций, вызывающих программу.В компьютере четыре основных этапа обработки: ввод, хранение, вывод и обработка.


Современные компьютеры могут выполнять миллиарды вычислений в секунду. Возможность выполнять вычисления много раз в секунду позволяет современным компьютерам выполнять несколько задач одновременно, что означает, что они могут выполнять множество различных задач одновременно. Компьютеры выполняют множество различных задач, где автоматизация полезна. Некоторые примеры - управление светофорами, транспортными средствами, системами безопасности, стиральными машинами и цифровыми телевизорами.

Компьютеры могут быть сконструированы так, чтобы делать с информацией практически все, что угодно. Компьютеры используются для управления большими и маленькими машинами, которые в прошлом управлялись людьми. Большинство людей использовали персональный компьютер дома или на работе. Они используются для таких вещей, как расчет, прослушивание музыки, чтение статьи, письмо и т. Д.

Современные компьютеры - это электронное компьютерное оборудование. Они очень быстро выполняют математическую арифметику, но компьютеры на самом деле не «думают». Они следуют только инструкциям своего программного обеспечения.Программное обеспечение использует оборудование, когда пользователь дает ему инструкции, и дает полезный результат.

Люди управляют компьютерами с помощью пользовательских интерфейсов. К устройствам ввода относятся клавиатуры, компьютерные мыши, кнопки и сенсорные экраны. Некоторыми компьютерами также можно управлять с помощью голосовых команд, жестов рук или даже сигналов мозга через электроды, имплантированные в мозг или вдоль нервов.

Компьютерные программы разрабатываются или пишутся компьютерными программистами. Некоторые программисты пишут программы на собственном языке компьютера, называемом машинным кодом.Большинство программ написано с использованием таких языков программирования, как C, C ++, Java. Эти языки программирования больше похожи на язык, на котором говорят и пишут каждый день. Компилятор переводит инструкции пользователя в двоичный код (машинный код), который компьютер поймет и сделает то, что необходимо.

Автоматизация [изменить | изменить источник]

У большинства людей проблемы с математикой. Чтобы показать это, попробуйте набрать в голове 584 × 3220. Все шаги запомнить сложно! Люди создали инструменты, чтобы помочь им вспомнить, где они находились в математической задаче.Другая проблема, с которой сталкиваются люди, заключается в том, что им приходится решать одну и ту же проблему снова и снова. Кассиру приходилось каждый день вносить сдачу в уме или с помощью бумажки. Это заняло много времени и допустило ошибки. Итак, люди сделали калькуляторы, которые делали одно и то же снова и снова. Эта часть компьютерной истории называется «историей автоматических вычислений», что является причудливым выражением для «истории машин», благодаря которым мне легко решать одну и ту же математическую задачу снова и снова, не делая ошибок."

Счеты, логарифмическая линейка, астролябия и антикиферский механизм (датируемый примерно 150–100 гг. До н.э.) являются примерами автоматических вычислительных машин.

Программирование [изменить | изменить источник]

Людям не нужна машина, которая будет делать одно и то же снова и снова. Например, музыкальная шкатулка - это устройство, которое воспроизводит одну и ту же музыку снова и снова. Некоторые люди хотели научить свою машину делать разные вещи. Например, они хотели сказать музыкальной шкатулке, чтобы она каждый раз играла разную музыку.Они хотели иметь возможность программировать музыкальную шкатулку, чтобы музыкальная шкатулка воспроизводила разную музыку. Эта часть компьютерной истории называется «историей программируемых машин», что является причудливым выражением для «истории машин, которым я могу приказать делать разные вещи, если я знаю, как говорить на их языке».

Один из первых таких примеров был построен героем Александрии (ок. 10–70 нашей эры). Он построил механический театр, который разыгрывал пьесу продолжительностью 10 минут и управлялся сложной системой веревок и барабанов.Эти веревки и барабаны были языком машины - они рассказывали, что машина делает и когда. Некоторые утверждают, что это первая программируемая машина. [1]

Историки расходятся во мнении относительно того, какие ранние машины были «компьютерами». Многие говорят, что «замковые часы», астрономические часы, изобретенные Аль-Джазари в 1206 году, являются первым известным программируемым аналоговым компьютером. [2] [3] Продолжительность дня и ночи можно регулировать каждый день, чтобы учесть изменяющуюся продолжительность дня и ночи в течение года. [4] Некоторые считают эту ежедневную настройку компьютерным программированием.

Другие говорят, что первый компьютер создал Чарльз Бэббидж. [4] Ада Лавлейс считается первым программистом. [5] [6] [7]

Эра вычислительной техники [изменить | изменить источник]

В конце средневековья люди начали думать, что математика и инженерия были важнее. В 1623 году Вильгельм Шикард создал механический калькулятор. Другие европейцы сделали больше калькуляторов после него.Это не были современные компьютеры, потому что они могли только складывать, вычитать и умножать - вы не могли изменить то, что они делали, чтобы заставить их делать что-то вроде игры в тетрис. Из-за этого мы говорим, что они не были программируемыми. Теперь инженеры используют компьютеры для проектирования и планирования.

В 1801 году Жозеф Мари Жаккард использовал перфокарты, чтобы указать своему текстильному ткацкому станку, какой узор ткать. Он мог использовать перфокарты, чтобы указывать ткацкому станку, что ему делать, и он мог менять перфокарты, что означало, что он мог запрограммировать ткацкий станок на плетение нужного узора.Это означает, что ткацкий станок можно было программировать. В конце 1800-х годов Герман Холлерит изобрел запись данных на носитель, который затем мог быть прочитан машиной, разработав технологию обработки данных перфокарт для переписи населения США 1890 года. Его счетные машины считывали и суммировали данные, хранящиеся на перфокартах, и они начали использоваться для правительственной и коммерческой обработки данных.

Чарльз Бэббидж хотел создать аналогичную машину, которая могла бы производить вычисления. Он назвал это «Аналитическая машина». [8] Поскольку у Бэббиджа не было достаточно денег и он всегда менял свою конструкцию, когда у него появлялась идея получше, он так и не построил свою аналитическую машину.

Со временем компьютеры стали использоваться все чаще. Людям быстро становится скучно повторять одно и то же снова и снова. Представьте, что вы тратите свою жизнь на то, чтобы записывать вещи на учетных карточках, хранить их, а затем снова искать их. В Бюро переписи населения США в 1890 году этим занимались сотни людей. Это было дорого, и отчеты требовали много времени. Затем инженер придумал, как заставить машины выполнять большую часть работы. Герман Холлерит изобрел машину для подсчета результатов, которая автоматически суммирует информацию, собранную бюро переписи населения.Его машины производила компания Computing Tabulating Recording Corporation (которая позже стала IBM). Они арендовали машины вместо того, чтобы продавать их. Производители машин уже давно помогают своим пользователям разбираться в них и ремонтировать их, и техническая поддержка CTR была особенно хороша.

Благодаря машинам, подобным этой, были изобретены новые способы общения с этими машинами, и были изобретены новые типы машин, и, в конце концов, родился компьютер, каким мы его знаем.

Аналоговые и цифровые компьютеры [изменить | изменить источник]

В первой половине 20-го века ученые начали использовать компьютеры, в основном потому, что ученым нужно было разгадывать много математики, и они хотели тратить больше времени на размышления о научных вопросах, вместо того, чтобы часами складывать числа.Например, если им нужно было запустить ракету, им нужно было проделать много математических расчетов, чтобы убедиться, что ракета работает правильно. Итак, они собрали компьютеры. В этих аналоговых компьютерах использовались аналоговые схемы, что затрудняло их программирование. В 1930-х они изобрели цифровые компьютеры и вскоре упростили их программирование. Однако это не так, поскольку было предпринято много последовательных попыток довести арифметическую логику до 13. Аналоговые компьютеры - это механические или электронные устройства, которые решают проблемы.Некоторые также используются для управления машинами.

Крупногабаритные компьютеры [изменить | изменить источник]

Ученые придумали, как создавать и использовать цифровые компьютеры в 1930-1940-х годах. Ученые создали множество цифровых компьютеров, и, когда они это сделали, они выяснили, как задавать им правильные вопросы, чтобы получить от них максимальную пользу. Вот несколько компьютеров, которые они построили:

EDSAC был одним из первых компьютеров, который запомнил то, что вы ему сказали, даже после выключения питания.Это называется (фон Нейман) архитектурой.
  • Электромеханические "станки Z" Конрада Цузе. Z3 (1941) была первой рабочей машиной, которая использовала двоичную арифметику. Двоичная арифметика означает использование «Да» и «Нет». складывать числа. Вы также можете запрограммировать это. В 1998 году было доказано, что Z3 завершен по Тьюрингу. Завершение по Тьюрингу означает, что этому конкретному компьютеру можно сказать все, что математически возможно сказать компьютеру. Это первый в мире современный компьютер.
  • Непрограммируемый компьютер Атанасова – Берри (1941), который использовал электронные лампы для хранения ответов «да» и «нет», а также регенеративную конденсаторную память.
  • The Harvard Mark I (1944), большой компьютер, на котором можно было программировать.
  • Лаборатория баллистических исследований армии США ENIAC (1946), которая могла складывать числа, как это делают люди (с использованием чисел от 0 до 9), и иногда ее называют первым электронным компьютером общего назначения (так как Z3 Конрада Цузе 1941 года использовал электромагниты вместо электроники ).Однако сначала единственным способом перепрограммировать ENIAC было его перепрограммирование.

Несколько разработчиков ENIAC видели его проблемы. Они изобрели способ, позволяющий компьютеру запоминать то, что он ему сказал, и способ изменить то, что он запомнил. Это известно как «архитектура хранимых программ» или архитектура фон Неймана. Джон фон Нейман рассказал об этой конструкции в статье «Первый проект отчета по EDVAC », распространенной в 1945 году. Примерно в это же время стартовал ряд проектов по разработке компьютеров на основе архитектуры хранимых программ.Первый из них был завершен в Великобритании. Первой, где была продемонстрирована работа, была Manchester Small-Scale Experimental Machine (SSEM или «Baby»), в то время как EDSAC, завершенный через год после SSEM, был первым действительно полезным компьютером, который использовал сохраненный проект программы. Вскоре после этого машина, первоначально описанная в статье фон Неймана - EDVAC - была завершена, но не была готова в течение двух лет.

Практически все современные компьютеры используют архитектуру хранимых программ. Это стало основным понятием, определяющим современный компьютер.Технологии, используемые для создания компьютеров, изменились с 1940-х годов, но многие современные компьютеры по-прежнему используют архитектуру фон Неймана.

В 1950-х годах компьютеры строились в основном из электронных ламп. Транзисторы заменили электронные лампы в 1960-х годах, потому что они были меньше и дешевле. Им также требуется меньше энергии и они не ломаются так сильно, как электронные лампы. В 1970-х годах технологии были основаны на интегральных схемах. Микропроцессоры, такие как Intel 4004, сделали компьютеры меньше, дешевле, быстрее и надежнее.К 1980-м годам микроконтроллеры стали достаточно маленькими и дешевыми, чтобы заменить механические элементы управления в таких вещах, как стиральные машины. В 80-е годы также появились домашние компьютеры и персональные компьютеры. С развитием Интернета персональные компьютеры становятся таким же обычным явлением в домашнем хозяйстве, как телевизор и телефон.

В 2005 году Nokia начала называть некоторые из своих мобильных телефонов (серии N) «мультимедийными компьютерами», а после выпуска Apple iPhone в 2007 году многие теперь начинают добавлять категорию смартфонов к «настоящим» компьютерам.В 2008 году, если смартфоны включены в число компьютеров в мире, крупнейшим производителем компьютеров по количеству проданных единиц уже была не Hewlett-Packard, а Nokia. [9]

Есть много типов компьютеров. Некоторые включают:

  1. персональный компьютер
  2. рабочая станция
  3. базовый блок
  4. сервер
  5. миникомпьютер
  6. суперкомпьютер
  7. встроенная система
  8. планшетный компьютер

«Настольный компьютер» - это небольшой компьютер с экраном (который не является частью компьютера).Большинство людей хранят их на столе, поэтому их называют «настольными компьютерами». «Портативные компьютеры» - это компьютеры, достаточно маленькие, чтобы поместиться у вас на коленях. Это позволяет легко носить их с собой. И ноутбуки, и настольные компьютеры называются персональными компьютерами, потому что один человек одновременно использует их для таких вещей, как воспроизведение музыки, просмотр веб-страниц или видеоигры.

Есть компьютеры большего размера, которыми могут пользоваться одновременно многие люди. Они называются «мэйнфреймы», и эти компьютеры делают все, что заставляет работать такие вещи, как Интернет.Вы можете думать о персональном компьютере так: персональный компьютер подобен вашей коже: вы можете видеть его, другие люди могут видеть его, а через свою кожу вы чувствуете ветер, воду, воздух и остальной мир. Мэйнфрейм больше похож на ваши внутренние органы: вы их никогда не видите и даже не думаете о них, но если они вдруг пропадут, у вас возникнут очень большие проблемы.

Встроенный компьютер, также называемый встроенной системой, - это компьютер, который делает одно и только одно, и обычно делает это очень хорошо.Например, будильник - это встроенный компьютер: он показывает время. В отличие от вашего персонального компьютера, вы не можете использовать свои часы для игры в тетрис. Из-за этого мы говорим, что встроенные компьютеры нельзя программировать, потому что вы не можете установить больше программ на свои часы. Некоторые мобильные телефоны, банкоматы, микроволновые печи, проигрыватели компакт-дисков и автомобили работают со встроенными компьютерами.

ПК "все в одном" [изменить | изменить источник]

Универсальные компьютеры - это настольные компьютеры, в которых все внутренние механизмы компьютера находятся в том же корпусе, что и монитор.Apple сделала несколько популярных примеров компьютеров «все в одном», таких как оригинальный Macintosh середины 1980-х годов и iMac конца 1990-х и 2000-х годов.

  • Обработка текста
  • Таблицы
  • Презентации
  • Редактирование фотографий
  • Электронная почта
  • Монтаж / рендеринг / кодирование видео
  • Аудиозапись
  • Управление системой
  • Разработка веб-сайтов
  • Разработка программного обеспечения

Компьютеры хранят данные и инструкции в виде чисел, потому что компьютеры могут работать с числами очень быстро.Эти данные хранятся в виде двоичных символов (1 и 0). Символ 1 или 0, хранящийся в компьютере, называется битом, который происходит от двоичной цифры слова. Компьютеры могут использовать вместе множество битов для представления инструкций и данных, которые используются этими инструкциями. Список инструкций называется программой и хранится на жестком диске компьютера. Компьютеры работают с программой, используя центральный процессор, и они используют быструю память, называемую ОЗУ, также известную как (память с произвольным доступом), в качестве пространства для хранения инструкций и данных, пока они это делают.Когда компьютер хочет сохранить результаты программы на потом, он использует жесткий диск, потому что вещи, хранящиеся на жестком диске, все еще можно запомнить после выключения компьютера.

Операционная система сообщает компьютеру, как понимать, какие задания он должен выполнять, как выполнять эти задания и как сообщать людям результаты. Миллионы компьютеров могут использовать одну и ту же операционную систему, в то время как каждый компьютер может иметь свои собственные прикладные программы, которые делают то, что нужно его пользователю. Использование одних и тех же операционных систем позволяет легко научиться использовать компьютеры для новых целей.Пользователь, которому нужно использовать компьютер для чего-то другого, может узнать, как использовать новую прикладную программу. Некоторые операционные системы могут иметь простые командные строки или полностью удобный графический интерфейс.

Одна из самых важных задач, которые компьютеры выполняют для людей, - это помощь в общении. Коммуникация - это то, как люди делятся информацией. Компьютеры помогли людям продвинуться вперед в науке, медицине, бизнесе и обучении, потому что они позволяют экспертам из любой точки мира работать друг с другом и обмениваться информацией.Они также позволяют другим людям общаться друг с другом, выполнять свою работу практически где угодно, узнавать практически обо всем или делиться друг с другом своим мнением. Интернет - это то, что позволяет людям общаться между своими компьютерами.

Компьютер теперь почти всегда является электронным устройством. Обычно он содержит материалы, которые при утилизации превращаются в электронные отходы. Когда в некоторых местах покупается новый компьютер, законы требуют, чтобы стоимость его утилизации была оплачена.Это называется управлением продуктом.

Компьютеры могут быстро устареть, в зависимости от того, какие программы использует пользователь. Очень часто их выбрасывают в течение двух-трех лет, потому что для некоторых новых программ требуется более мощный компьютер. Это усугубляет проблему, поэтому утилизация компьютеров происходит часто. Многие проекты пытаются отправить работающие компьютеры в развивающиеся страны, чтобы их можно было использовать повторно и не тратить так быстро, поскольку большинству людей не нужно запускать новые программы. Некоторые компоненты компьютера, например жесткие диски, могут легко сломаться.Когда эти части попадают на свалку, они могут поместить в грунтовые воды ядовитые химические вещества, такие как свинец. Жесткие диски также могут содержать секретную информацию, например, номера кредитных карт. Если жесткий диск не стереть перед тем, как выбросить, злоумышленник может получить информацию с жесткого диска, даже если диск не работает, и использовать его для кражи денег с банковского счета предыдущего владельца.

Компьютеры бывают разных форм, но большинство из них имеют общий дизайн.

  • Все компьютеры имеют центральный процессор.
  • Все компьютеры имеют своего рода шину данных, которая позволяет им получать или выводить данные в среду.
  • Все компьютеры имеют тот или иной вид памяти. Обычно это микросхемы (интегральные схемы), которые могут хранить информацию.
  • Многие компьютеры имеют какие-то датчики, которые позволяют им получать данные из окружающей среды.
  • Многие компьютеры имеют какое-либо устройство отображения, которое позволяет им отображать выходные данные. К ним также могут быть подключены другие периферийные устройства.

Компьютер состоит из нескольких основных частей.При сравнении компьютера с человеческим телом центральный процессор похож на мозг. Он делает большую часть мышления и сообщает остальному компьютеру, как работать. Процессор находится на материнской плате, которая похожа на скелет. Он обеспечивает основу для других частей и несет нервы, соединяющие их друг с другом и с ЦП. Материнская плата подключена к источнику питания, который обеспечивает электричеством весь компьютер. Различные приводы (привод компакт-дисков, дисковод для гибких дисков и на многих новых компьютерах USB-накопитель) действуют как глаза, уши и пальцы и позволяют компьютеру читать различные типы хранилищ точно так же, как человек может читать разные виды книг.Жесткий диск похож на человеческую память и отслеживает все данные, хранящиеся на компьютере. У большинства компьютеров есть звуковая карта или другой способ воспроизведения звука, который похож на голосовые связки или голосовой ящик. К звуковой карте подключены динамики, похожие на рот, из которых выходит звук. Компьютеры также могут иметь графическую карту, которая помогает компьютеру создавать визуальные эффекты, такие как трехмерное окружение или более реалистичные цвета, а более мощные графические карты могут создавать более реалистичные или более сложные изображения, как это может сделать хорошо обученный художник. .

Название компании Продажи
(млрд долларов США)
Яблоко 220 000
Samsung 212 680
Foxconn 132 070
л.с. (Hewlett-Packard) 112 300
IBM 99,750
Hitachi 87 510
Microsoft 86830
Амазонка 74,450
Sony 72,340
Panasonic 70 830
Google 59 820
Dell 56 940
Toshiba 56 200
LG 54,750
Intel 52,700
  1. «Цапля Александрийская».Проверено 15 января 2008.
  2. ↑ Говард Р. Тернер (1997), Наука в средневековом исламе: иллюстрированное введение , стр. 184, Техасский университет Press, ISBN 0-292-78149-0
  3. ↑ Дональд Рутледж Хилл, «Машиностроение на Средневековом Ближнем Востоке», Scientific American , май 1991 г., стр. 64-9 (сравните Дональд Рутледж Хилл, Машиностроение)
  4. 4,0 4,1 Древние открытия, Эпизод 11: Древние роботы , History Channel, извлечено 06.09.2008
  5. ↑ Fuegi & Francis 2003, стр.16–26.
  6. Филлипс, Ана Лена (2011). «Краудсорсинг гендерного равенства: День Ады Лавлейс и сопутствующий ему веб-сайт направлены на повышение роли женщин в науке и технологиях». Американский ученый . 99 (6): 463.
  7. «Ада Лавлейс удостоена чести Google Doodle», The Guardian , 10 декабря 2012 г., получено 10 декабря 2012 г. .
  8. ↑ Не путайте аналитическую машину с разностной машиной Бэббиджа, которая была непрограммируемым механическим калькулятором.
  9. Миллер, Мэтью. «В 2008 году Nokia была крупнейшим производителем компьютеров в мире». ZDNet . Проверено 18 июля 2020.

Примечания [изменение | изменить источник]

  • a Кемпф, Кар (1961). " Историческая монография: Электронные компьютеры в артиллерийском корпусе ". Абердинский полигон (армия США).
  • a Филлипс, Тони (2000). «Антикиферский механизм I».Американское математическое общество. Проверено 5 апреля 2006.
  • a Шеннон, Клод Элвуд (1940). « Символьный анализ цепей реле и коммутации ». Массачусетский Технологический Институт.
  • a Digital Equipment Corporation (1972). Руководство по процессору PDP-11/40 (PDF). Мейнард, Массачусетс: Корпорация цифрового оборудования.
  • a Verma, G .; Мильке, Н.(1988). « Показатели надежности флэш-памяти на базе ETOX ». Международный симпозиум IEEE по физике надежности.
  • a Меуэр, Ханс (13 ноября 2006 г.). «Архитектуры делятся во времени». Штромайер, Эрих; Саймон, Хорст; Донгарра, Джек. ТОП500. Проверено 27 ноября 2006.
  • Стокс, Джон (2007). Внутри машины: иллюстрированное введение в микропроцессоры и компьютерную архитектуру . Сан-Франциско: Пресса без крахмала.ISBN 978-1-59327-104-6 .
.

Смотрите также