Что такое квантовый компьютер


Что такое квантовый компьютер? Разбор / Блог компании Droider.Ru / Хабр

Интересно, а какая сторона у монетки в тот момент, когда она в воздухе? Орел или решка, горит или не горит, открытое или закрытое, 1 или 0. Все это примеры двоичной системы, то есть системы, которая имеет всего два возможных состояния. Все современные процессоры в своем фундаменте основаны именно на этом!

При правильной организации транзисторов и логических схем можно сделать практически все! Или все-таки нет?

Современные процессоры это произведение технологического искусства, за которым стоят многие десятки, а то и сотни лет фундаментальных исследований. И это одни из самых высокотехнологичных устройств в истории человечества! Мы о них уже не раз рассказывали, вспомните хотя бы процесс их создания!

Процессоры постоянно развиваются, мощности растут, количество данных увеличивается, современные дата-центры ворочают данные сотнями петабайт (10 в 15 степени = 1 000 000 000 000 000 байт). Но что если я скажу что на самом деле все наши компьютеры совсем не всесильны!

Например, если мы говорим о BigData (больших данных) то обычным компьютерам могут потребоваться года, а то и тысячи лет для того, чтобы обработать данные, рассчитать нужный вариант и выдать результат.


И тут на сцену выходят квантовые компьютеры. Но что такое квантовые компьютеры на самом деле? Чем они отличаются от обычных? Действительно ли они такие мощные? Будет ли на них CS:GO идти в 100 тысяч ФПС?

Небольшая затравочка — мы вам расскажем, как любой из вас может уже сегодня попробовать воспользоваться квантовым компьютером!

Устраивайтесь поудобнее, наливайте чай, будет интересно.

Глава 1. Чем плохи обычные компьютеры?

Начнем с очень простого классического примера.

Представим, что у вас есть самый мощный суперкомпьютер в мире. Это компьютер Фугаку. Его производительность составляет 415 ПетаФлопс.

Давайте дадим ему следующую задачку: надо распределить три человека в две машины такси. Сколько у нас есть вариантов? Нетрудно понять что таких вариантов 8, то есть это 2*2*2 или 2 в третьей степени.

Как быстро наш суперкомпьютер справится с этой задачей? Мгновенно! Задачка-то элементарная.

А теперь давайте возьмем 25 человек и рассадим их по двум шикарным лимузинам, получим 2 в 25 степени или 33 554 432 варианта. Поверьте, это число тоже плевое дело для нашего суперкомпьютера.

А теперь 100 человек и 2 автобуса, сколько вариантов?

Считаем: 2 в 100 степени — это примерно 1.27 x 1030 или 1,267,650,600,228,229,401,496,703,205,376 вариантов.

Теперь нашему суперкомпьютеру на перебор всех вариантов понадобится примерно 4.6*10^+35 (4.6 на 10 в 35 степени) лет. А это уже очень и очень много. Такой расчет займет больше времени чем суммарная жизнь сотен вселенных.

Суммарная жизнь нашей вселенной: 14 миллиардов лет или 14 на 10 в 9 степени.

Даже если мы объединим все компьютеры в мире ради решения, казалось бы, такой простой задачки как рассадка 100 человек по 2 автобусам — мы получим решение, практически никогда!

И что же? Все? Выхода нет?

Есть, ведь квантовые компьютеры будут способны решить эту задачку за секунды!

И уж поверьте — использоваться они будут совсем не для рассадки 100 человек по 2 автобусам!

Глава 2. Сравнение. Биты и Кубиты

Давайте разберемся, в чем же принципиальная разница.

Мы знаем, что классический процессор состоит из транзисторов и они могут пропускать или не пропускать ток, то есть быть в состоянии 1 или 0 — это и есть БИТ информации.  Кстати, рекомендую посмотреть наше видео о том как работают процессоры.

Вернемся к нашему примеру с двумя такси и тремя людьми. Каждый человек может быть либо в одной, либо в другой машине — 1 или 0.

Вот все состояния:


Для решения процессору надо пройти через абсолютно все варианты один за одним и выбрать те, которые подходят под заданные условия.

В квантовых компьютерах используются тоже биты, только квантовые и они принципиально отличаются от обычных транзисторов.

Они так и называются Quantum Bits, или Кубиты.

Что же такое кубиты?

Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. Их главное свойство — они способны находиться одновременно в 2 состояниях, то есть в особом состоянии — суперпозиции.

Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0.

Суперпозиция — это нечто потрясающее. Считайте что кубиты — это одновременно открытая и закрытая дверь, или горящая и не горящая лампочка….

В нашем случае они одновременно 1 и 0!

Но квантовая механика говорит нам, что квантовый объект, то есть кубит, находится в суперпозиции, пока ты его не измеришь. Помните монетку — это идеальный пример суперпозиции — пока она в воздухе она одновременно и орел, и решка, но как только я ее поймал — все: либо орел, либо решка! Состояние определилось.

Надо понять, что эти кубиты и их поведение выбираются совсем не случайно — эти квантовые системы очень строго определены и их поведение известно. Они подчиняются законам квантовой механики!

Квантовый компьютер внутри

Говоря о самом устройстве, если мы привыкли к полупроводникам и кремнию в обычных процессорах, то в случае квантовых компьютеров люди все еще ищут, какие именно квантовые объекты лучше всего использовать для того, чтобы они выступили кубитами. Сейчас вариантов очень много — это могут быть и электроны со своим спином или, например, фотоны и их поляризация. Вариантов множество.

И это далеко не единственная сложность, с которой столкнулись ученые! Дело в том, что квантовые кубиты довольно нестабильны и их надо держать в холодном месте, чтобы можно было контролировать.

И если вы думаете, что для этого будет достаточно водяного охлаждения вашего системника, отчасти вы правы, только если залить туда жидкий Гелий, температура которого ниже минус двухсот семидесяти градусов Цельсия! А для его получения используются вот такие вот здоровые бочки.

Фактически, квантовые компьютеры — это одни из самых холодных мест во вселенной!

Принцип работы квантового компьютера

Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера:

Для решения подобной системы нам понадобится компьютер с 3 кубитами.

Помните, что классический компьютер должен был пройти все варианты один за одним? Так вот поскольку кубиты одновременно имеют состояния «1» и «0», то и пройти через все варианты он сможет, фактически одновременно!

Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то!

Но что же получается? Он выдает все варианты сразу, а как получить правильный?

Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам.

Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно:

1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров!

Думаете, что всё это звучит слишком хорошо, чтобы быть правдой? Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго.

У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ.

Ну то есть как верный? Он всегда будет содержать в себе минимальную возможность ошибки вследствие своей сложной квантовой природы, но ее можно сделать ничтожно малой, просто прогнав вычисления множество раз!

Квантовые компьютеры сегодня

Теперь перейдем к самому интересному — какое состояние сейчас у квантового компьютера? А то их пока как-то не наблюдается на полках магазинов!

На самом деле все, что я описал выше, это не такая уж и фантастика. Квантовые компьютеры уже среди нас и уже работают. Их разработкой занимаются GOOGLE, IBM, INTEL, MICROSOFT и другие компании поменьше. Кроме того в каждом большом институте есть исследовательские группы, которые занимаются разработкой и исследованием квантовых компьютеров.


Сундар Пичаи и Дэниэл Сэнк с квантовым компьютером Google. Октябрь 2019

В октябре прошлого года, в журнале Nature, Google выложила статью, которая шарахнула по всему миру огромными заголовками — КВАНТОВОЕ ПРЕВОСХОДСТВО!

В Google создали квантовый компьютер с 53 кубитами и смогли решить задачку, за 200 секунд, на решение которой у обычного компьютера ушло бы 10000 лет!

Конечно IBM было очень обидно и они начали говорить, что задача слишком специальная, и вообще не 10000 лет, а 2.5 дня, но факт остается фактом — квантовое превосходство было достигнуто в определенной степени!

Так что теперь вопрос считанных лет, когда квантовые компьютеры начнут использоваться повсеместно! IBM, например, только что анонсировали что в 2023 году создадут коммерческий квантовый компьютер с 1121 кубитами!

Чтобы вы понимали калькулятор Google даже не считает сколько будет 2 в 1121 степени, а просто говорит — бесконечность! И это совсем не предел.

Уже ведется разработка компьютеров на миллионы кубитов — именно они откроют истинный потенциал квантовых вычислений.

Более того, вы уже сейчас можете попробовать самостоятельно попробовать квантовые вычисления! IBM предлагает облачный доступ к самым современным квантовым компьютерам. Вы можете изучать, разрабатывать и запускать программы с помощью IBM Quantum Experience.

Но зачем вообще нужны квантовые компьютеры и где они будут применяться?

Естественно, не для распихивания людей по автобусам.

Задач множество. Главная — базы данных и поиск по ним, работа с BigData станет невероятно быстрой. Shazam, прокладывание маршрутов, нейронные сети, искусственный интеллект — все это получит невероятный толчок! Кроме того симуляции и моделирование квантовых систем! Зачем это надо — спросите вы?

Это очень важно, так как появится возможность строить модели взаимодействия сложных белковых соединений.

Это станет очень важным шагом для медицины, открывающим просто умопомрачительные просторы для создания будущих лекарств, понимания того как на нас влияют разные вирусы и так далее. Простор огромен!

Чтобы вы примерно понимали какая это сложная задачка, мы вернемся в примеру с монеткой. Представьте что вам надо заранее смоделировать что выпадет — орел или решка.

Надо учесть силу броска, плотность воздуха, температуру и кучу других факторов. Сложно? Ну не так уж!

А теперь представьте, что у вас не один человек, который кидает монетку, а миллион разных людей, в разных местах, по-разному кидают монетки. И вам надо рассчитать что выпадет у всех! Вот примерно настолько сложная эта модель о взаимодействии белков.

Кроме того, вы наверняка слышали о том, что квантовые компьютеры сделают наши пароли просто пшиком, который можно будет подобрать за секунды. Но это уже совсем другая тема…

Вывод

Какой вывод из всего этого мы можем сделать, квантовый компьютер — это принципиально новая система. Она отличается от обычных компьютеров в самом фундаменте, в физических основах на которых работает.

Их на самом деле даже нельзя сравнивать! Это все равно, что сравнивать обычные счеты и современные компьютеры!

И конечно есть большие сомнения, что вы когда-нибудь сможете прийти в магазин и купить свой маленький квантовый процессор. Но они вам и не нужны. Квантовые компьютеры для обычного пользователя станут как современные дата-центры, то есть нашими невидимыми помощниками, которые расположены далеко и которые просто делают нашу жизнь лучше или как минимум другой!

Что такое квантовые компьютеры и почему про это стоит знать

Осенью прошлого года компания Google заявила, что достигла квантового превосходства. Звучит как что-то сложное и не очень нужное простому пользователю? Не совсем так. Суть этой новости в том, что сотрудники Google с помощью специального квантового компьютера смогли решить задачу, с которой даже очень крутой суперкомпьютер за разумное время не справится. Впечатляет, не так ли?

К тому же это имеет прямое отношение к безопасности ваших данных, ведь многие защитные механизмы в цифровом мире основаны как раз на том, что их нельзя взломать за разумное время. Давайте разберемся, что это за квантовый компьютер такой и стоит ли опасаться, что киберпреступники начнут пользоваться им для взлома.

Что такое квантовый компьютер

Основное отличие квантовых компьютеров от традиционных, транзисторных, которыми все мы пользуемся сейчас, — то, как они работают с данными. Привычные нам устройства, от смартфонов и ноутбуков до суперкомпьютера-шахматиста Deep Blue, хранят все в битах — так называется мельчайшая единица информации, которая может принимать всего два значения: либо ноль, либо единица.

Бит можно сравнить с лампочкой, которая либо включена (единица), либо выключена (ноль). Файл, лежащий на диске, для компьютера выглядит как набор лампочек, из которых одни горят, а другие — нет. Если взять очень много таких лампочек, то, включив одни и выключив другие, можно собрать хоть фразу «тут был Альберт», хоть Мону Лизу.

Но когда устройство решает какую-то задачу, оно включает и выключает лампочки, постоянно записывая и стирая результаты промежуточных вычислений, чтобы они не забивали память. Это занимает время, так что если задача очень сложная, компьютер будет думать долго.

Квантовые компьютеры, в отличие от своих старших братьев, хранят и обрабатывают данные с помощью квантовых битов — кубитов. Последние могут не только «включаться» и «выключаться», но и находиться в переходном состоянии или даже быть включенными и выключенными одновременно. Продолжая аналогию с лампочками: кубит — это как светильник, который вы выключили, а он все равно продолжает моргать. Или кот Шредингера, который одновременно и жив, и мертв.

Поскольку лампочки в квантовом компьютере одновременно горят и не горят, это сильно экономит время. Поэтому он решает сложные задачи намного быстрее даже очень мощного классического устройства. Например, в Google утверждают, что их квантовая машина Sycamore за три с небольшим минуты провела вычисления, над которыми обычный суперкомпьютер в теории бился бы 10 000 лет! Вот это и называют серьезным термином «квантовое превосходство».

Квантовые компьютеры в жизни

Итак, квантовые компьютеры очень быстро решают очень сложные задачи. Но почему они тогда просто не вытеснили медленные классические системы? Дело в том, что эта технология еще молода, а состояние «моргающей лампочки» — очень нестабильное, и чем больше в системе кубитов, тем труднее его поддерживать. А доступность сложных вычислений зависит в том числе от количества кубитов: с помощью двух лампочек, пусть и очень крутых, Мону Лизу не нарисуешь.

Есть и другие проблемы, мешающие квантовым компьютерам полностью заменить предшественников. Вы помните, что они обрабатывают информацию принципиально иначе? Это значит, что и программы для них нужны совершенно другие. На квантовый компьютер нельзя просто взять и установить Windows — надо с нуля разрабатывать специальную квантовую ОС и специальные же квантовые приложения.

И хотя такие попытки уже предпринимают ученые и IT-гиганты, пока что квантовые компьютеры работают примерно как внешние жесткие диски — подключаются к обычным компьютерам и управляются через них. И используются они для решения узкого круга задач — например, для моделирования атома водорода или поиска по базам данных. А вот выйти в Интернет или посмотреть видео с котиками с помощью квантового компьютера не получится.

Тем не менее многие считают квантовые вычисления перспективными. Первая компания, продающая бизнесу квантовые компьютеры, появилась еще в 1999 году. Сейчас в это направление вкладываются крупные организации, такие как американские Google, Honeywell и IBM (последняя уже предлагает клиентам доступ к своему квантовому компьютеру через облако), японская Toshiba и китайские Alibaba и Baidu. В 2019 году квантовыми технологиями заинтересовались и российские власти.

Правда, тут стоит оговориться: задача, которую решили в Google, не имеет никакой практической пользы, кроме демонстрации возможностей квантовых технологий. Погружаться в ее суть мы не будем, потому что это действительно сложно и не очень нужно обычному пользователю. Но если вы очень хотите убедиться в этом лично, описание задачи есть в отчете Google.

А еще не все согласны с утверждением Google про 10 000 лет. В IBM, например, уверены, что суперкомпьютер сможет решить эту же задачу пусть и не за три минуты, но всего за два с лишним дня. Хотя это, в общем-то, тоже ощутимая разница.

Квантовые компьютеры (пока) не угроза

Как видите, квантовые компьютеры до сих пор — скорее игрушка для ученых, чем потребительские устройства или инструмент взломщика. Что, конечно, не значит, что в будущем они не станут ближе к жизни (и опаснее). Впрочем, эксперты в области защиты данных уже сейчас готовят на них управу. Но об этом — в следующий раз.

Квантовый компьютер - что это такое и каков принцип его работы?

Квантовый компьютер — это средство вычислительной техники, где в основе работы центрального процессора лежат законы квантовой механики. Такой компьютер принципиально отличается от традиционных ПК, работающих на основе кремниевых чипов. 

Это устройство применяет для вычисления не классические алгоритмы, а процессы квантовой природы — квантовые алгоритмы, использующие эффекты квантовой механики, такие как квантовый параллелизм и квантовая запутанность.

Базой для вычислений такого типа служит кубит — система, в которой число частиц аналогично импульсу, а фазовая переменная (энергетическое состояние) – координате. Фазовый кубит был впервые реализован в лаборатории Делфтского университета и с тех пор активно изучается. Кубиты могут как бы находиться одновременно в двух состояниях: содержать ноль и единицу сразу. Благодаря этому квантовый компьютер может выполнять конкретные математические задачи в тысячи раз быстрее классических компьютеров.

Навигация по материалу:

Принцип работы квантового компьютера

Квантовые компьютеры часто понимают неправильно из-за того, что в их названии есть слово «компьютер». Когда люди слышат слово «компьютер», они думают о ноутбуках или телефонах, но дело в том, что эти устройства и даже самые большие суперкомпьютеры в мире работают по одной и той же фундаментальной схеме. Однако, квантовые компьютеры имеют фундаментальные отличия и их нельзя называть компьютерами в привычном понимании этого слова.

Квантовые вычислительные системы — устройства, использующие явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Такие устройства оперируют кубитами (квантовыми битами), которые могут одновременно принимать значение и логического ноля, и логической единицы. Поэтому с ростом количества использующихся кубитов число обрабатываемых одновременно значений увеличивается в геометрической прогрессии.

В квантовом компьютере основным элементом является кубит – квантовый бит. В отличие от обычного бита он находится в состоянии квантовой суперпозиции, то есть имеет значение и 0, и 1, и любые их сочетания в любой момент времени. Если в системе находится несколько кубитов, то изменение одного также влечет за собой изменение всех остальных кубитов.

Это позволяет одновременно просчитывать все возможные варианты. Обычный процессор с его бинарными вычислениями, фактически просчитывает варианты последовательно. Сначала один сценарий, потом другой, потом третий и т.д. Чтобы ускорить, начали применять многопоточность, запуская вычисления параллельно, предвыборку, чтобы предугадывать возможные варианты ветвления и просчитывать их заранее. В квантовом компьютере это все делается параллельно.

Отличается и принцип вычислений. В каком-то смысле квантовый компьютер уже содержит все возможные варианты решения задачи, нашей задачей только является считать состояние кубитов и… выбрать из них правильный вариант. И вот тут начинаются сложности. В этом и заключается принцип работы квантового компьютера.

Прогресс развития квантовых вычислений за последние 20 лет:

Пример работы квантовых вычислений

Для того, чтобы понять потенциал квантовых вычислений, давайте рассмотрим простую задачку: пройти лабиринт.

Единственный способ решения такой задачи на классическом компьютере — перебор всех возможных вариантов, череда успехов и неудач. Однако квантовый компьютер, используя всю мощь квантовой физики, проверяет все варианты одновременно и дает правильное решение намного быстрее.

Казалось бы, можно немного подождать и классический компьютер решит задачу, зачем строить сложную квантовую машину? Все бы ничего, но только человечество постоянно сталкивается с задачами, которые займут тысячи, миллионы, миллиарды лет вычислений на самых мощных суперкомпьютерах мира. Время — непозволительная роскошь для человека, нам нужны решения этих задач уже сегодня. Давайте попробуем разобраться где конкретно сила квантового компьютера может нам помочь?

Для решения каких задач может использоваться квантовый компьютер?

Квантовый компьютер не способен полностью заменить классический, да это и не нужно. Обычный компьютер справляется со множеством задач, но, все таки, существует класс проблем, которые квантовая машина способна решить за час, в том время как классическим компьютерам понадобится время жизни Вселенной.

Известные на сегодняшний день задачи такого типа, можно разделить на 4 группы.

Задачи с преобразованием Фурье

Это, в основном, задачи криптографии и шифрования: тот самый алгоритм Шора, который может позволить взломать RSA и Биткоин. Происходит это потому, что квантовое преобразование Фурье невероятно быстрое и, если найти ему правильное применение, то оно даёт экспоненциальное ускорение.

Задачи оптимизации

Сюда входят комбинаторные проблемы, которые решаются лишь перебором всех возможных вариантов, например, лабиринт, который был рассмотрен выше. Другой нашумевший квантовый алгоритм, алгоритм Гровера, позволяет решать такие задачи быстрее обычного перебора, однако, не дает такого сильного ускорения как алгоритм Шора. Комбинаторные задачи постоянно возникают в сфере логистики, оптимизации и экономики.

Квантовое машинное обучение

Третий квантовый алгоритм, дающий заметное ускорение — это алгоритм HHL. Он способен решать систему линейных уравнений экспоненциально быстрее любого классического алгоритма; как известно, линейные уравнения возникают повсюду, например, в задачах машинного обучения.

Quantum-assisted machine learning — это одно из самых полезных применений квантовых компьютеров. Да и вообще использование квантовой физики в задачах искусственного интеллекта это классно: можно, к примеру, использовать квантовые выборки, которые находятся в состоянии суперпозиции нескольких классических выборок.

Симуляции квантовой системы

Это самое естественное применение квантовых компьютеров. Такой подход предложил ещё Фейнман: чтобы смоделировать очень сложную квантовую систему вам нужна другая сложная квантовая система, о которой вы все знаете и умеете ей управлять.

Поэтому полноценный квантовый компьютер поможет создать новые материалы, новые лекарства, высокотемпературные сверхпроводники. Это задачи, где надо хитрым образом организовать взаимодействие атомов, но чтобы понять как именно это сделать классическим компьютерам потребуется триллионы лет вычислений, в то время как большим квантовым — несколько часов.

Чем квантовый компьютер отличается от обычного?

Квантовые вычисления и квантовая связь — сами эти понятия были изобретены буквально 30 лет назад, и первые работы ученых даже не брали в научные журналы: говорили, что фантастика, а не наука. Сегодня же квантовые системы не только существуют, но и продаются за деньги, создавая и решая новые проблемы безопасности, в основном в сфере криптографии.

Квантовые компьютеры – это машины, основанные на уникальном поведении, описываемом квантовой механикой, и совершенно отличающимся от поведения классических систем. Одно из таких отличий – способность частицы или группы частиц в некотором отношении находиться только в двух дискретных квантовых базовых состояниях – назовем их 0 и 1.

Квантовый компьютер непригоден для большинства повседневных дел, зато способен быстро решить математические задачи, на которых основана современная криптография.

Принципиальным отличием квантового компьютера от обычного является то, что его операционная единица — кубит (квантовый бит) может находиться в состоянии неопределенности, или, если угодно, в нескольких состояниях одновременно. Звучит запутанно, еще сложнее на практике, но как показали годы исследований, это работает.

Приведем ключевые различия квантового и обычного компьютера:

  Обычный компьютер Квантовый компьютер

Логика

0 / 1 `a|0> + b|1>, a^2+b^2=1`

Физика

Полупроводниковый транзистор Квантовый объект

Носитель инф.

Уровни напряжения Поляризация, спин,…

Операции

NOT, AND, OR, XOR над битами Вентили: CNOT, Адамара,…

Взаимосвязь

Полупроводниковый чип Запутанность между собой

Алгоритмы

Стандартные (см. Кнут) Специальные (Шор, Гровер)

Принцип

Цифровой, детерминированный Аналоговый, вероятностный

Квантовый компьютер сильно отличается от классического и вряд ли пригоден для игры в «Тетрис», зато он неизмеримо быстрее обычного решает вероятностные и оптимизационные задачи.

Среди вещей, которые можно радикально ускорить квантовыми вычислениями, — оптимизация маршрутов транспорта, секвенирование ДНК, предсказание биржевых котировок и подбор криптографических ключей. Правда, ответ тоже всегда будет вероятностным, даже считать его с компьютера является сложной проблемой, но, сделав несколько довольно быстрых прогонов одной и той же задачи, можно прийти к одному-единственному, правильному ответу: в интересующем нас случае — ключу шифрования.

Зачем нужны квантовые компьютеры?

Одно из самых важных применений квантового компьютера сейчас — разложение на простые числа. Дело в том, что вся современная криптография основана на том, что никто не сможет быстро разложить число из 30–40 знаков (или больше) на простые множители. На обычном компьютере на это уйдёт миллиарды лет. Квантовый компьютер сможет это сделать примерно за 18 секунд.

Это означает, что тайн больше не будет, потому что любые алгоритмы шифрования можно будет сразу взломать и получить доступ к чему угодно. Это касается всего — от банковских переводов до сообщений в мессенджере. Возможно, наступит интересный момент, когда обычное шифрование перестанет работать, а квантовое шифрование ещё не изобретут.

Ещё квантовые компьютеры отлично подходят для моделирования сложных ситуаций, например, расчёта физических свойств новых элементов на молекулярном уровне. Это, возможно, позволит быстрее находить новые лекарства или решать сложные ресурсоёмкие задачи.

Сейчас квантовые компьютеры всего этого не умеют — они слишком сложные в производстве и очень нестабильные в работе. Максимум, что можно пока сделать, — заточить квантовый компьютер под единственный алгоритм, чтобы получить на нём колоссальный выигрыш в производительности. Как раз для этих целей их и закупают крупнейшие компании — чтобы быстрее решать одну-две самые важные для себя задачи.

Варианты реализации квантового компьютера

На сегодняшний день есть очень много реализаций квантовых вычислений, но самые перспективные на мой взгляд следующие подходы:

  • Спины в твердом теле
  • Сверхпроводники
  • Фотоника
  • Одиночные атомы (холодные ионы или ЯМР)

Спины в твердом теле

Исторически, кубиты рассматривали как спины, поэтому идея о том, чтобы взять множество спинов в каком-нибудь твёрдом теле (чтобы они никуда не убегали) — естественная для реализации квантовых вычислений.

Такой подход теоретически масштабируем, но, конечно, тут есть свои сложности, такие как сам процесс изготовления устройств и управление квантовым состоянием. Зато времена жизни кубитов получаются впечатляюще большие.

Сверхпроводники

Пожалуй это самая многообещающая реализация квантовых вычислений, и так считаю не только я: IBM, Google, Intel, Rigetti, D-Wave, да практически все крупные компании, которые занимаются железом квантовых вычислений занимаются непосредственно «железом», ведь в такой реализации квантового компьютера кубиты — это сверхпроводящие металлические структуры на кремниевом чипе, почти как транзисторы в обычном процессоре.

Охлаждают кубиты до низких температур для того, чтобы они перешли в квантовые состояние и чтобы устранить тепловые шумы. Эта технология масштабируемая, то есть ничто не мешает нам сделать процессор, размером несколько сантиметров, на котором будут миллионы кубитов.

Фотоника

Фотоника чаще всего используется в криптографии, ведь фотоны (частицы света) квантовые сами по себе и не нуждаются в холоде: для криптографических протоколов используют лазеры и оптоволокно.

Базу для квантовые вычисления можно делать таким же образом, а можно реализовать на чипах, по которым передаются фотоны. Эта технология так же масштабируема, но инженерных сложностей тут, кажется, больше, чем у сверхпроводников.

Одиночные атомы (холодные ионы или ЯМР)

Представляете, люди научились ловить отдельные атомы с помощью оптической ловушки и охлаждать с помощью лазера. Это достаточно дёшево и просто.

Первый компьютер из 50 кубитов был собран именно из холодных атомов в Гарварде. Однако, размер ловушки ограничен, так что масштабировать эту технологию крайне трудно. Тоже самое касается и ЯМР: вы берёте сложную молекулу и называется каждый атом в ней кубитом. Размер молекул ограничен, что усложняет создание большого компьютера, более того, есть проблемы со считыванием состояния кубита.

Проблемы квантовых компьютеров

При проектировании и эксплуатации квантовых компьютеров перед учеными и инженерами возникает огромное количество проблем, которые на сегодняшний день решаются с переменным успехом. Согласно исследованию (схожее исследование) можно выделить следующий ряд проблем:

  • Чувствительность к окружению и взаимодействию с окружением.
  • Накопление ошибок при вычислениях.
  • Сложности с начальной инициализации состояний кубитов.
  • Сложности с созданием многокубитных систем.

Давайте организуем все основные проблемы в три большие группы и рассмотрим поподробнее каждую из них.

Декогеренция

Квантовое состояние очень хрупкая штука, кубиты в запутанном состоянии крайне нестабильны, любое внешнее воздействие может разрушить (и разрушает) эту связь. Изменение температуры на мельчайшую долю градуса, давление, пролетевший рядом случайный фотон — все это дестабилизирует нашу систему.

Для решения этой проблемы строят низкотемпературные саркофаги, в которых температура (-273.14 градуса цельсия) чуть-чуть выше абсолютного ноля, с максимальной изоляцией внутренней камеры с процессором от всех (возможных) воздействий внешней среды.

Максимальное время жизни квантовой системы из нескольких запутанных кубитов, в течение которого она сохраняет свои квантовые свойства и может быть использована для произведения вычислений, называют временем декогеренции.

На текущий момент время декогеренции в лучших квантовых решениях составляет порядка десятков и сотен микросекунд.

Есть прекрасный сайт quantumcomputingreport.com, на котором можно посмотреть сравнительные таблицы параметров всех созданных квантовых систем. В эту статью для примера вынесены только два топовых процессора — от IBM IBM Q System One и от Google Sycamore. Как мы видим, время декогеренции (Т2) не превышает 200 мкс.

Я не нашел точных данных по Sycamore, но в самой статье о квантовом превосходстве приводятся две цифры — 1 миллион вычислений за 200 секунд, в другом месте — за 130 секунд без потерь на управляющие сигналы и прочее. В любом случае это дает нам время декогеренции порядка 150 мкс.

Computer Name N Qubits Max paired T2 (мкс)
IBM Q System One 20 6 70
Google Sycamore 53 4 ~150-200

Чем нам грозит декогеренция?

Основная проблема в том, что через 150 мкс наша вычислительная система из N запутанных кубитов начнет выдавать на выходе вместо вероятностного распределения правильных решений — вероятностный белый шум.

То есть нам надо:

  • Инициализировать систему кубитов
  • Провести вычисление (цепочка вентильных операций)
  • Считать результат

И сделать все это за 150 мкс. Не успел — результат превратился в тыкву. Но это еще не все…

Ошибки

Как мы уже говорили, квантовые процессы и квантовые вычисления имеют вероятностную природу, мы не можем быть уверены на 100% ни в чем, а только с какой-то вероятностью. Ситуация усугубляется еще и тем, что квантовые вычисления подвержены ошибкам.

Основные типы ошибок при квантовых вычислениях это:

  • Ошибки декогеренции, обусловлены сложностью системы и взаимодействием с внешней средой
  • Вычислительные ошибки гейтов (обусловлены квантовой природой вычислений)
  • Ошибки считывания финального состояния (результата)

Ошибки, связанные с декогерентностью, возникают сразу же, как только мы запутали наши кубиты и начали производить вычисления. Чем больше кубитов мы запутали, тем сложнее система, и тем легче ее разрушить. Низкотемпературные саркофаги, защищенные камеры, все эти технологические ухищрения как раз направлены на то, чтобы снизить число ошибок и продлить время декогеренции.

Вычислительные ошибки гейтов — любая операция (вентиль) над кубитами может с некоторой вероятностью завершиться с ошибкой, а нам для реализации алгоритма нужно выполнить сотни вентилей, вот и представьте, что мы получим в конце выполнения нашего алгоритма. Классический вариант ответа на вопрос — “Какова вероятность встретить динозавра в лифте?” — 50х50, или встретишь или нет.

Проблема еще усугубляется тем, что стандартные методы коррекции ошибок (дублирование вычислений и усреднение) в квантовом мире не работают из-за теоремы о запрете клонирования. Для коррекции ошибок в квантовых вычислениях пришлось придумать квантовые же методы коррекции. Грубо говоря мы берем N обычных кубитов и делаем из них 1 логический кубит с меньшим уровнем ошибок.

Но тут возникает другая проблема — общее количество кубитов. Смотрите, допустим у нас есть процессор со 100 кубитами, из которых 80 кубитов заняты коррекцией ошибок, тогда нам для вычислений остается только 20.

Ошибки считывания финального результата — как мы помним, результат квантовых вычислений нам представлен в виде вероятностного распределения ответов. Но считывание финального состояния тоже может завершиться с ошибкой.

На том же сайте есть сравнительные таблицы процессоров по уровням ошибок. Для сравнения возьмем те же процессоры, что и в предыдущем примере — IBM IBM Q System One и Google Sycamore:

Computer 1-Qubit Gate Fidelity 2-Qubit Gate Fidelity Readout Fidelity
IBM Q System One 99.96% 98.31%
Google Sycamore 99.84% 99.38% 96.2%

Здесь фиделити — мера схожести двух квантовых состояний. Величину ошибки можно грубо представить как 1-Fidelity. Как мы видим, ошибки на 2-х кубитных гейтах и ошибки считывания являются главным препятствием к выполнению сложных и длинных алгоритмов на существующих квантовых компьютерах.

Еще можно почитать роадмап от 2016 года от NQIT по решению задачи коррекции ошибок.

Архитектура процессора

В теории мы строим и оперируем схемами из десятков запутанных кубитов, в реальности же все сложнее. Все существующие квантовые чипы (процессоры) построены таким образом, что обеспечивают безболезненное запутывание одного кубита только со своими соседями, которых не больше шести.

Если же нам надо запутать 1-й кубит, скажем, с 12-м, то нам придется строить цепочку дополнительных квантовых операций, задействовать дополнительные кубиты и прочее, что увеличивает общий уровень ошибок. Да, и не забывайте про время декогеренции, возможно к тому моменту, когда вы закончите связывать кубиты в нужную вам схему, время закончится и вся схема превратится в симпатичный генератор белого шума.

Также не забывайте, что архитектура у всех квантовых процессоров разная, и программу, написанную в эмуляторе в режиме “связность всех со всеми” нужно будет “перекомпилировать” в архитектуру конкретного чипа. Есть даже специальные программы оптимизаторы для выполнения этой операции.

Максимальная связность и максимальное количество кубитов для тех же топовых чипов:

Computer Name N Qubits Max paired T2 (мкс)
IBM Q System One 20 6 70
Google Sycamore 53 4 ~150-200

И, для сравнения, таблица с данными предыдущего поколения процессоров. Сравните количество кубитов, время декогеренции и процент ошибок с тем, что мы имеем сейчас у нового поколения. Все-таки прогресс потихоньку, но движется.

Что мы имеет в итоге:

  • На текущий момент нет полносвязных архитектурных схем из > 6 кубитов.
  • Чтобы на реальном процессоре запутать кубит 0 с, например, 15-м может потребоваться несколько десятков дополнительных операций.
  • Больше операций -> больше ошибок -> сильнее влияние декогерентности.

Пути решения проблем

Для решения вышеуказанных проблем, в настоящее время используют следующие подходы и методы:

  • Использование криокамер с низкими температурами (10 мК (–273,14°C)).
  • Использование максимально защищенных от внешних воздействий процессорных блоков.
  • Использование систем квантовой коррекции ошибок (Логический кубит).
  • Использование оптимизаторов при программировании схем для конкретного процессора.

Также проводятся исследования, направленные на увеличение времени декогеренции, на поиск новых (и доработку известных) физических реализаций квантовых объектов, на оптимизацию схем коррекции и прочее и прочее. Прогресс есть (посмотрите выше на характеристики более ранних и топовых на сегодняшний день чипов), но пока идет медленно, очень очень медленно.

Первый в мире протокол квантового интернета

Нидерландские ученые разработали первый в мире протокол для так называемого квантового интернета, работающего без помех и максимально защищенного от взлома. Идея принадлежит специалистам исследовательского центра QuTech.

Протокол, работающий на канальном уровне, разработан группой ученых под руководством профессора Стефани Вейнер (Stephanie Wehner). Также они проработали общую концепцию квантовых сетей, которые в будущем, по их мнению, могут заменить собой традиционный интернет и локальные сети.

В основе идеи специалистов QuTech лежит принцип очень быстрой обработки кубитов, поскольку они не могут находиться в памяти длительное время. Это обеспечит высокую скорость передачи информации, а явление квантовой запутанности, еще одна основа протокола, даст возможность максимально защитить передаваемые данные.

Явление квантовой запутанности подразумевает взаимозависимость двух и более объектов, в данном случае кубитов, и их неразрывную связь друг с другом. Попытка перехвата данных приведет к изменению квантового состояния одного или нескольких кубитов и, как следствие, к потере передаваемой информации. Другими словами, информацию может получить исключительно целевое устройство – несанкционированный доступ к ней исключен.

Технические подробности о работе первого протокола квантовой сети Стефании Вейнер оставила в тайне. Она уточнила лишь, что для работы квантового интернета вполне сгодится физическая инфраструктура обычного интернета.

Какие компании разрабатывают квантовые компьютеры уже сегодня?

Формально дальше всех в этой гонке продвинулась канадская компания D-Wave. Она создала и успешно продает единственные представленные сегодня на рынке квантовые компьютеры. Среди ее клиентов — Google, NASA, Volkswagen и Lockheed Martin. В конце января этого года D-Wave анонсировала выпуск коммерческой версии квантового компьютера четвертого поколения D-Wave 2000Q. Его мощность, как утверждают в компании составляет 2000 кубитов. Однако многие сомневаются в том, что машины D-Wave можно называть полноценными квантовыми компьютерами, поскольку они способны решать лишь узкий круг вычислительных задач. С этим мнением не согласны в Google. Купленный поисковиком у D-Wave компьютер (кстати, он стоит от $10 млн до $15 млн) справился с некой специальной задачей в 100 миллионов раз быстрее обычного.

Американская IBM готовится вывести на рынок квантовые компьютеры с вычислительной мощностью 50 кубитов. Произойдет это, как утверждают в компании, уже в ближайшие несколько лет. С помощью квантовых компьютеров, получивших предварительное название IBM Q, можно будет, в частности, «распутать» сложные молекулярные и химические взаимодействия, что приведет к открытию новых лекарств и материалов, считают в IBM. Большие изменения ждут сферу логистики: будут найдены оптимальные пути для наиболее эффективной доставки товаров. Квантовые компьютеры также позволят найти новые способы моделирования финансовых данных и выделить ключевые глобальные факторы риска, что обезопасит инвестиции. В сфере искусственного интеллекта и машинного обучения можно будет обрабатывать очень большие объемы данных (например, связанные с поиском изображений или видео). «Мы сейчас переходим от стадии, на которой речь идет лишь об игрушках исследователей, к ситуации, позволяющей оценить новшество с коммерческой точки зрения», — отметил технический директор квантового центра IBM Скотт Краудер. Ранее IBM создала квантовый компьютер мощностью 5 кубитов.

Практически одновременно с IBM о планах выпустить коммерческий 50-кубитовый квантовый компьютер заявила компания Google. Причем сроки названы примерно те же — ближайшие 5 лет. «В области квантовых вычислений скоро будет достигнута историческая веха», — написали исследователи из лаборатории Quantum AI компании Google в своей статье, опубликованной в журнале Nature. Над созданием квантового компьютера поисковик начал работать еще в 2014 году.

Успехи конкурентов подстегивают еще одного крупного игрока — компанию Microsoft. В ноябре прошлого года она объявила о решении удвоить свои усилия в области создания квантового компьютера. В отличие от IBM и Google, компания Билла Гейтса делает ставку на интригующую, но пока недоказанную концепцию топологического квантового вычисления. «Я думаю, что мы находимся на пороге перехода от исследований к разработке», — сказал вице-президент квантовой программы Microsoft Тодд Холмдал. Одновременно компания разрабатывает программное обеспечение для будущих супермашин.

Всего, по данным аналитической компании CB Insights, над задачей создания квантового компьютера бьются не менее 18 корпораций. Среди них — авиастроительные компании Airbus и Lockheed Martin, китайский интернет-ритейлер Alibaba, британская телекоммуникационная компания British Telecommunications, компании Hewlett Packard, Toshiba, Intel, Mitsubishi, Nokia.

Эксперты Массачусетского технологического института (MIT) ожидают, что полноценные квантовые компьютеры, обрабатывающие информацию в разы быстрее современных суперкомпьютеров, появятся на рынке в течение ближайших пяти лет.

Подведем итоги

Как видите, квантовые технологии — это крайне перспективная область, которая может открыть нам множество тайн природы и помочь решить задачи, над которыми бьется не одно поколение людей. Вопрос о возможности создания универсального квантового компьютера сложный, ведь впереди очень много физических и инженерных проблем.

Квантовые компьютеры пока все еще остаются экспериментальными. Маловероятно, что полноценный квантовый компьютер, обеспечивающий действительно высокую вычислительную мощность, появится в ближайшие годы. Производство кубитов и построение из них стабильных системы все еще далеко от совершенства.

Судя по тому, что на физическом уровне квантовые компьютеры имеют несколько решений, которые отличаются технологиями и, вероятно, стоимостью, они не будут унифицированы еще лет 10. Процесс стандартизации может растянуться надолго.

Кроме того, уже сейчас понятно, что квантовые компьютеры и в ближайшие годы, скорее всего, будут «штучными» и очень дорогими устройствами. Вряд ли они окажутся в кармане у простого пользователя, но списке суперкомпьютеров можно ожидать их появления.

Вероятно, что квантовые компьютеры будут предлагаться в виде облачных вычислений, когда их ресурсы смогут задействовать заинтересованные исследователи и организации.

Самые последние новости криптовалютного рынка и майнинга:The following two tabs change content below.

Материал подготовлен редакцией сайта "Майнинг Криптовалюты", в составе: Главный редактор - Антон Сизов, Журналисты - Игорь Лосев, Виталий Воронов, Дмитрий Марков, Елена Карпина. Мы предоставляем самую актуальную информацию о рынке криптовалют, майнинге и технологии блокчейн.

Что может квантовый компьютер / Блог компании Конференции Олега Бунина (Онтико) / Хабр

Квантовая физика родилась в 1900 году, когда Макс Планк предположил, что энергия поглощается не непрерывно, а отдельными порциями — квантами. Его идея получила дальнейшее развитие: фотоэлектрический эффект Эйнштейна, теория атома Бора, Резерфорд опытным путем показал, как выглядит ядро атома, Луи де Бройль стер границу между волнами и материей, Гейзенберг и Шрёдингер разработали квантовую механику.

Квантовую физику тяжело понять — её математический аппарат почти невозможно перевести на «человеческий» язык. Но «потрогать» её проявления в повседневной жизни вполне реально: лазеры, флэшки, компакт-диски, интегральные схемы или графен — все эти технологии появились благодаря квантовой физике. Логично, что ее решили использовать и для вычислений — в квантовых компьютерах.

Квантовые компьютеры кардинально отличаются от обычных: они обрабатывают информацию на порядок быстрее, а памяти у них больше экспоненциально. Уже сейчас экспериментальные образцы решают некоторые задачи быстрее, чем самые мощные суперкомпьютеры. Перспективы от внедрения квантовых компьютеров манят. С их помощью можно создать новые лекарства, композитные материалы прочнее титана и легче пластика, сверхпроводники, которые работают при комнатной температуре, добиться абсолютной безопасности шифрования или разработать универсальный искусственный интеллект. Но в реальности всё не так радужно. Всё потому, что мы пока не понимаем, что действительно умеет квантовый компьютер.


Анатолий Дымарский (Сколтех) — физик-теоретик, работает в области физики квантовых систем. Анатолий расскажет, чем квантовый компьютер отличается от обычного и что сулят его возможности IT-индустрии.

Как работает обычный компьютер


Чтобы объяснить, что такое квантовый компьютер и как он работает, нужно начать издалека и рассказать, как работает компьютер обычный. Работа обычного компьютера определяется двумя параметрами: памятью, скоростью вычислений.

Память — основная характеристика вычислительной системы. Компьютер умеет читать, писать и обрабатывать информацию, которая хранится в памяти.

Компьютер выполняет простейшие операции: перемножения, вычитания, сложения чисел. Если выполнять эти операции много и быстро, то можно объединить их в программу, которая обрабатывает информацию. Так работают базы данных, поиск или нейронные сети. Здесь важна скорость вычислений или скорость выполнения операций (FLOPS).

Есть еще третий (дополнительный) параметр — детерминизм, общая характеристика для всех вычислительных систем. Означает, что все машины работают по программе, которая однозначна — ноль всегда ноль, а единица это точно единица. Никаких иных толкований не предусмотрено и нет элемента неопределенности.

Неопределенность можно внести только на уровне входных данных, например, случайными числами. Ввод может быть случайным, но программа всегда однозначно обрабатывает все входящие данные.

Как работает квантовый компьютер


Он работает иначе — по интуитивно непонятной логике. Как и обычный, он проводит вычисления, но в его основе лежат законы квантовой механики.

Классический мир и классическая механика детерминистичны. Это значит, что значение любого регистра памяти в компьютере всегда 0 или 1, а тарелка всегда либо целая, либо разбита.

В квантово-механической системе нет такой четкости, а есть вероятность, которая определяет ее суть. Правильный вопрос здесь — какова вероятность, что тарелки разбились или целы, какова вероятность, что значения регистра 0 или 1?


Вероятность — первое важное понятие в квантовой механике. С точки зрения квантовой механики «тарелки Шредингера» одновременно и целые, и разбитые. Есть некая вероятность того, что они целые, и некоторая вероятность, что разбитые. Эта неопределенность и отражает реальный физический мир.

На классическом уровне неопределенность маскирует наше незнание. Например, когда мы покупаем лотерейный билет «Спортлото», для нас появляется вероятность выиграть, потому что мы не знаем выигрышный номер.

Для классической физики лотерея — это не вероятностный процесс. Всегда можно описать движение руки, которая запускает барабан, скорость и траекторию каждого шарика. Теоретически, можно угадать выигрышный номер (хотя практически — сложно). В квантовой механике даже теоретически нельзя угадать, что произойдет в следующую секунду. Мы можем только предсказать это с точки зрения вероятности.

Второе понятие — принцип суперпозиции. Обычный бит находится только в значениях 0 или 1. В квантовых компьютерах нет обычных битов, а есть квантовые — кубиты. Квантовый бит находится в состоянии 0 или 1 с какой-то вероятностью. Кубит может находиться одновременно в этих состояниях, притом в разных комбинациях — в суперпозиции этих состояний.

Когда система (кубит) находится одновременно в состоянии 0 или 1, можно говорить только о вероятностях. Если состояний много, система одновременно находится во всех возможных состояниях, но с меньшей вероятностью для каждого. Это принципиально важно.

В классической программе в каждый конкретный момент времени каждая строка программы работает с определенной ячейкой памяти. В квантовой механике можно работать со всеми ячейками памяти одновременно.

«Память» квантового компьютера


В чем основная разница между квантовой и классической памятью компьютера? В обычном компьютере мы записываем числа в двоичном коде. Например, число 8 в двоичной системе выглядит как 00001000, и для его записи достаточно 4 битов.

В квантовых компьютерах кубиты находятся в состоянии 0 или 1 с какой-то вероятностью. Вероятность — это число. Чтобы записать одно число с бесконечной точностью, нужно бесконечное количество битов. Поэтому, в теории, один кубит — это физическая система с бесконечным количеством памяти.

На практике у методов измерения ограниченная точность. Будем считать, что она соответствует обычной машинной (float). Получается, что кубит содержит два числа: вероятности, что кубит в состоянии 0 и в состоянии 1.

Примечание: для упрощения мы игнорируем, что сумма вероятностей кубита в состоянии 0 и 1 должна равняться единице. Основной вывод не зависит от упрощения.

Один кубит соответствует двум вещественным числам (float). Это большой выигрыш, потому что для двух вещественных чисел на обычном компьютере нужно два машинных слова — 128 обычных битов, а мы обошлись одним квантовым. Может показаться, что квантовый компьютер в 128 раз лучше обычного. Но это не так.

Квантовый компьютер экспоненциально лучше обычного.
Один кубит это 2 вещественных числа. Два кубита — 4 вещественных числа. Но восемь кубитов это 256 потенциальных конфигураций восьми нулей и единиц — два в восьмой степени.

Для одного кубита выигрыш в 128 раз, а для восьми кубитов он существенно больше — 256*128. Система n кубитов в памяти эквивалентна вещественных чисел.

Емкость квантовой памяти растет в геометрической прогрессии.
Память обычного ноутбука эквивалентна 15 кубитам, 40 кубитов равны памяти самых мощных вычислительных центров, а 50-60 кубитов превышают суммарную память всех вычислительных центров всего мира.

Три-четыре кубита эквивалентны увеличению обычной классической памяти в 10-20 раз. Квантовая память значительно более емкая, чем любые другие классические способы записи информации. В этом главный потенциал квантовых вычислений.

Но экспоненциальный рост емкости квантовой памяти вызывает проблему размерности. Из-за проклятия размерности сложно описать такую квантовую систему на классическом компьютере — требуется все больше и больше памяти.

Какие задачи может решить квантовый компьютер


Если квантовый мир работает на уровне неопределенности, как вообще возможно что-то посчитать? У квантовой механики вероятностная природа, а нам нужен точный ответ. Как все будет работать, если нужно просто перемножить два числа?

Объясню на примере задач класса NP, то есть задач разрешимости, решение которых невозможно найти за полиномиальное время — во всяком случае, в предположении . Однако, правильность решения за полиномиальное время проверить можно. Это похоже на взлом закрытого замка: мы не умеем пользоваться отмычками, но можем быстро проверить любой ключ, если он есть.

Благодаря принципу суперпозиции квантовая система находится сразу во всех состояниях и ищет лучший вариант. Однозначного ответа система не дает, но повышает вероятность того, что лучший вариант является решением. Когда система остановится на каком-то решении, мы сможем довольно быстро проверить его на правильность.

Если окажется, что ответ неверен, запустим квантовый компьютер еще раз. Вероятность получения правильного ответа больше 50%, а часто гораздо больше. Значит, за 2-4 запуска квантового алгоритма мы получим правильный ответ.

У нас не будет однозначного ответа, а только вероятность получить правильный ответ. Но эта вероятность весьма высока. Фактически, мы гадаем, но не на кофейной гуще, а на научной. За несколько итераций мы найдем ответ и проверим, что он правильный.

Параметры квантового компьютера


У классического компьютера два параметра качества: объем памяти и количество операций. С обычным компьютером мы по умолчанию предполагаем, что у нас есть доступ ко всем ячейкам памяти для записи и чтения.

В квантовом случае есть три параметра.

Объем памяти или количество кубит. Чем больше памяти, тем лучше? Для квантового компьютера нет — когда мы увеличиваем количество кубит, растет сложность квантовой системы. Систему становится тяжело поддерживать в изолированном состоянии.

Время работы или количество последовательных операций (когерентность). Систему обязательно требуется поддерживать в изолированном состоянии — в физике это называется когерентность. Если позволить квантовой системе взаимодействовать с окружающей средой, то это разрушит состояние ячеек квантовой памяти. Вместо нулей и единиц будет просто шум.

Мы пытаемся поддерживать систему изолированной как можно дольше. Но чем больше квантовых операций проводим, тем больше времени на них уходит, а значит все сложнее поддерживать систему в изолированном состоянии.

Примечание: здесь количество операций не в секунду, а за все время работы системы.

Возникает парадокс: чем больше кубитов, тем меньше операций доступно. Поэтому время, в течении которого можно держать систему изолированной и произвести некоторое количество операций, это важный параметр.

Представьте обычный компьютер, в котором нет охлаждения. Пока компьютер не перегреется, у него есть время что-то посчитать, а потом он отключается. Примерно то же самое происходит в квантовом компьютере. В нем нет «вентилятора»: чем больше работает, тем больше нагревается, пока не разрушится. Поэтому есть ограничение на количество операций.

Универсальность. В классическом компьютере доступны любые операции: умножение, деление, вычитание. Теоретически, в квантовом тоже. Но на практике, существенно проще проводить операции только с соседними кубитами, которые расположены на прямой, в прямоугольном или квадратном массиве. Для работы со всеми кубитами требуется очень сложная архитектура — на практике пока так не умеют.

Все три направления конфликтуют друг с другом. Мы можем улучшить одно, но это произойдет за счет ухудшения двух других. Сейчас, когда технология в зачаточном состоянии, можно выделить несколько прототипных платформ, и каждая из них пытается улучшить показатели одного направления за счет двух других.

Прототипы


Выделю три прототипа, над которыми работают крупные компании. Google, IBM, Intel, Microsoft вкладываются в развитие квантовых компьютеров. Все вместе они вложили больше 500 млн долларов в разработку, лаборатории и исследовательские центры.

Первые классические компьютеры занимали целые комнаты, работали на вакуумных лампах и так нагревались, что для них требовалось отдельное мощное охлаждение. Квантовые компьютеры на них очень похожи — это шкафы высотой по 3 метра, большую часть которых занимают системы охлаждения. Компьютеры охлаждают до температуры близкой к абсолютному нулю, чтобы квантовые системы могли выполнять свои вычислительные функции.

Универсальные квантовые компьютеры


Это универсальные машины от Google и IBM с памятью примерно 20 кубит. Они выполняют любые операции, потому что полная универсальность доступна с относительно небольшим числом кубитов, дальше возникает практическое ограничение. Возможно, через год люди научатся работать с 30-40 кубитами.

Универсальные квантовые компьютеры способны реализовать произвольные квантовые алгоритмы, например, алгоритмы Шора и Гровера.

Современная криптография основана на разложении чисел на простые множители. В настоящее время неизвестно, существует ли полиномиальный не квантовый алгоритм для задачи факторизации. Однако 25 лет назад Питер Шор опубликовал статью, в которой объяснил, как квантовый компьютер может разложить очень большое целое число на простые множители.

Квантовый алгоритм компьютера работает не детерминистически, а угадывает простые множители с вероятностью правильного ответа больше 50% и находит простые множители экспоненциально быстрее, чем обычный.

С распространением квантовых компьютеров все современные методы шифрования окажутся уязвимы, и это основная мотивация в разработке квантовых алгоритмов последние 25 лет. Но пока применить метод Шора пока сложно, потому что алгоритм требует большой квантовый компьютер. Маленькие решают задачу только для небольших чисел.

Другим примером, демонстрирующим потенциал квантовых вычислений, является Алгоритм Гровера для задачи перебора или поиска решения уравнения , где какая-то сложная функция.

Кроме упомянутых выше алгоритмов Шора и Гравера есть большое количество других квантовых алгоритмов. Любая физическая система хочет перейти в состояние равновесия — квантовая не исключение. С научной точки зрения правильнее говорить не о равновесии, а об основном состоянии системы. Классический аналог — состояние покоя. Система всегда стремится перейти в состояние покоя с минимальной энергией. В терминах вычислительных задач — это оптимизационная задача минимизации энергии. Квантовый компьютер как раз может решать подобные задачи.

Вся область применимости квантовых алгоритмов и компьютеров пока не понятна. Но уже есть десятки различных оптимизационных задач, с которыми квантовые компьютеры и алгоритмы могут справиться, и находятся новые.

Квантовые симуляторы ограниченной универсальности


Это другое направление: универсальность ограничивается, но поддерживается изоляция (когерентность). Это компьютеры на рубеже в 50-70 кубитов, что в смысле памяти уже больше, чем любой суперкомпьютер.

На этой границе возможности специализированного квантового компьютера превосходят возможности классического — возникает квантовое превосходство. Это значит, что квантовые компьютеры могут решать некоторые задачи, на которые у обычных (даже суперкомпьютеров) уйдут десятки, сотни или тысячи лет.

В октябре 2019 Google заявил, что достиг квантового превосходства. Новость появилась во всех ведущих газетах и журналах, соответствующая научная статья была опубликована в Nature. Тематические статьи выпустили многие газеты, даже New York Times и Wall Street Journal, которые далеки от науки.

В реальности Google разработал квантовый процессор с ограниченной универсальностью. У него достаточно большое количество кубитов, и он может выполнять некоторые узкие задачи лучше, чем любой классический компьютер. Другой вопрос, что это очень узкие и искусственные задачи.

Некогерентные процессоры с числом кубитов от 2 тысяч


Если забыть про универсальность и когерентность, можно добавлять 2 или даже 3-4 тысячи кубитов. Этим направлением занимается компания D-Wave из Канады. У них есть процессоры с тысячей кубитов, но без когерентности.

Возможные области применения квантовых компьютеров


Одна большая потенциальная область применения — это криптография. Вторая — оптимизационные задачи, которые возникают в самых разных областях.

Наука. Квантовые вычисления могут помочь предсказывать поведение элементарных частиц, моделировать молекулы ДНК или разрабатывать новые лекарственные препараты. Например, квантовые вычисления пытаются применять в фармакологии. Для этого нужно понимать, какую форму принимают разные протеины (про которые можно думать, как про микроскопические квантовые объекты). Мы не знаем, как они себя будут вести, но самый простой способ это понять — симулировать их поведение на квантовом компьютере. У этой научной задачи огромный бизнес-потенциал: новые лекарства, добавки, антибиотики.

Новые материалы. В науке о материалах главное — понять взаимодействие атомов, что можно смоделировать на квантовых компьютерах. Это тоже научная задача, но создав новый материал, его уже можно продавать.

Машинное обучение и искусственный интеллект. Машинное обучение — сложный процесс, который требует огромного количества вычислений. Пока здесь нет практической пользы от квантовых компьютеров, потому что они сейчас не на том уровне развития. Но в перспективе, квантовые компьютеры могут ускорить стандартные алгоритмы. В некоторых случаях это выглядит революционно, потому что можно в десятки раз сократить время обучения нейросети.

Транспорт, энергетика, логистика. В этих сферах много оптимизационных задач. Например, в энергетике главная проблема — распределение электрической энергии по стране. Цена на электричество в разных регионах отличается, при этом во время передачи часть энергии теряется, а с ней и прибыль. Чтобы заработать больше денег, бизнес пытается оптимизировать передачу. Это одна из тех задач, которая находится в классе NP. Сложно найти правильное решение, но квантовый компьютер может помочь.

Бизнес-приложения. В бизнесе квантовыми вычислениями занимаются только большие компании, корпорации. У гигантов есть деньги и ресурсы, например, у Google, D-Wave или IBM (лидер области с большими наработками).

На сайте компании D-Wave написано, что уже в 150 бизнес-приложениях используются квантовые вычисления. IBM выпустил брошюру, в которой обсуждается, что можно сделать с помощью квантового компьютера. Это десятки различных индустрий и потенциально сотни бизнес-решений. Так все выглядит на бумаге.

В реальности все немного иначе. Развитие технологий сейчас пока не на том уровне, чтобы применять их на практике.

Что значит квантовая революция для IT-индустрии


Пока что ничего. Мы находимся в так называемой эре NISQ — Noisy Intermediate-Scale Quantum technology. Это значит, что сейчас нет таких квантовых устройств, которые могли бы соперничать с классическими компьютерами. Пока нельзя создать квантовую систему, которая по всем параметрам превзойдет классическую: достаточно небольшую, универсальную и изолированную. Пока получаются только системы, которые выполняют узкоспециальные задачи определенного сорта лучше, чем вычислительный кластер. Квантовые технологии пока непрактичны. Хотелось бы использовать этот огромный потенциал для своих ежедневных задач, но неизвестно, как это сделать.

У квантовых технологий огромный «подрывной потенциал». Если научиться хорошо решать хотя бы одну из оптимизационных задач, о которых говорилось выше, это изменит одну конкретную индустрию, как минимум. Надеюсь, что через 5-10 лет в некоторых направлениях ситуация изменится.

Многие компании создают прообразы настоящих квантовых компьютеров — они уже что-то умеют делать, но пока этого недостаточно.

В Сколтехе мы пытаемся ответить на главный вопрос — как и для чего можно использовать квантовый компьютер. С моими коллегами Владимиром Антоновым и Олегом Астафьевым трудимся над проектом, в рамках которого работаем над маленьким квантовым компьютером. К сожалению, часть архитектурных и дизайнерских вопросов еще не решены, потому что мы все еще не уверены, какие именно задачи должен будет решать этот компьютер. Если этот вопрос вам интересен, приглашаю его обсудить.

То, с каким интересом участники HighLoad++ восприняли доклад о квантовых компьютерах и АЭС, натолкнуло нас на мысль уделить большее внимание подобным темам на наших конференциях. Поэтому на РИТ++ в мае в онлайне у нас будут секции научпопа и применения IT в смежных областях. И это только малая часть новинок фестиваля «Российские интернет-технологии» — подробнее смотрите на сайте и в рассылке.

Вводная по квантовым компьютерам (перевод с сайта Explaining Computers) / Хабр

Привет, Хабр! Представляю вашему вниманию перевод статьи «Quantum Computing» автора Christopher Barnatt.

Квантовые вычисления


Квантовые вычисления — быстро развивающаяся область компьютерных исследований, коммерческое применение которой ожидается в ближайшее время. К этому времени квантовые компьютеры превзойдут традиционные компьютеры в определённых задачах, к которым относятся молекулярное и материальное моделирование, оптимизация логистики, финансовое моделирование, криптография и обучение искусственного интеллекта.

Основы квантовых вычислений


Традиционные компьютеры построены из кремниевых микросхем, содержащих миллионы или миллиарды миниатюрных транзисторов. Каждый из них может быть включен — в понимании машины это состояние «0» или «1». Впоследствии компьютер хранит и обрабатывают данные, используя «двоичные числа» или «биты».

Квантовые компьютеры работают с «квантовыми битами» или «кубитами». Они могут поддерживаться аппаратно разными способами — например, с помощью квантово-механических свойств сверхпроводящих электрических цепей или отдельных захваченных ионов.

Кубиты могут существовать более чем в одном состоянии или «суперпозиции» в один и тот же момент времени. Что позволяет кубиту принимать значение «1», «0» или оба значения одновременно. Это позволяет квантовому компьютеру обрабатывать гораздо большее количество данных, чем классический компьютер, и выполнять массовую параллельную обработку. Это также означает, что каждый кубит, добавленный в квантовый компьютер, экспоненциально увеличивает его мощность.

Большинство людей теряется, когда слышит про свойства кубита. Подброшенная монета не может выпадать одновременно орлом и решкой. И всё же, квантовому состоянию кубита под силу что-то подобное. Поэтому неудивительно, что известный физик-ядерщик Нильс Бор однажды заявил: — «Всякий, кого не шокирует квантовая теория, просто её не понимает!»

Помимо суперпозиций, кубиты могут «запутываться». «Запутанность» — ещё одно ключевое квантово-механическое свойство, означающее, что состояние одного кубита может зависеть от состояния другого. Это означает, что наблюдение за одним кубитом может выявить состояние его ненаблюдаемой пары.

Создавать кубиты и управлять ими очень сложно. Многие из сегодняшних экспериментальных квантовых процессоров используют квантовые явления, возникающие в сверхпроводящих материалах, и, следовательно, нуждаются в охлаждении почти до абсолютного нуля (около минус 272 градусов Цельсия). Также требуется защита от фонового шума, и даже в этом случае выполнение вычислений с использованием кубитов потребуют исправления ошибок. Основной задачей квантовых вычислений является создание отказоустойчивой машины.

Квантовые первопроходцы

К компаниям, которые в настоящее время разрабатывают оборудование для квантовых компьютеров, относятся: IBM, Alibaba, Microsoft, Google, Intel, D-Wave Systems, Quantum Circuits, IonQ, Honeywell, Xanadu и Rigetti. Многие из них работают совместно с исследовательскими группами крупных университетов, и все они продолжают добиваться значительных успехов. Дальше приводится обзор работы каждой из этих компаний.

IBM

IBM работает над созданием квантового компьютера уже более 35 лет. Она добилась значительного прогресса с несколькими работающими машинами. Согласно веб-сайту IBM-Q: — «Сегодня квантовые вычисления — это игровая площадка для исследователей, но через пять лет они станут мейнстримом. Через пять лет эффект квантовых вычислений выйдет за рамки исследовательской лаборатории. Он будет широко использоваться новыми категориями профессионалов и разработчиков, которые используют этот новый метод вычислений для решения проблем, которые когда-то считались неразрешимыми».

В 2016 году IBM запустила сайт под названием IBM Q Experience, который показал 5-кубитный квантовый компьютер всему интернету. С этого времени, к нему присоединились вторая машина на 5 кубитов и машина на 16 кубитов, обе из которых доступны для экспериментов. Чтобы помочь тем, кто хочет узнать о квантовых вычислениях и принять участие в их разработке, IBM предлагает программную платформу для квантовых вычислений с открытым исходным кодом под названием Qiskit.

В ноябре 2017 года IBM объявила, что к её квантовому облаку добавляются две 20-кубитные машины. Их могут использовать клиенты, которые являются зарегистрированными членами IBM Q Network. IBM описывает это как «всемирное сообщество ведущих компаний, стартапов, академических институтов и национальных исследовательских лабораторий из списка Fortune 500, работающих с IBM над продвижением квантовых вычислений и изучением практических приложений для бизнеса и науки».

Также в ноябре 2017 года IBM объявила что сконструировала квантовый процессор на 50 кубитов, который на тот момент считался самым мощным квантовым оборудованием.


50-кубитный квантовый компьютер IBM

В январе 2019 года IBM объявила о выпуске своей IBM Q System One как «первой в мире интегрированной универсальной системы приближенных квантовых вычислений, разработанной для научного и коммерческого использования». Эта модульная и относительно компактная система предназначена для использования вне лабораторных условий. Вы можете узнать больше о IBM Q System One в этом пресс-релизе.

Google

Ещё один технологический гигант, который усердно работает над тем, чтобы квантовые вычисления стали реальностью, — это Google, у которой есть лаборатория квантового ИИ. В марте 2017 года инженеры Масуд Мохсени, Питер Рид и Хартмут Невен, которые работают на этом объекте, опубликовали статью в Nature. В ней они рассказали, что квантовые вычисления возможны на относительно небольших устройствах, которые появятся в течение следующих пяти лет. Это подтверждает взгляды IBM на сроки появления коммерческих квантовых вычислений.

На раннем этапе развития квантовых вычислений компания Google использовала машину от канадской компании D-Wave Systems. Однако сейчас компания активно разрабатывает собственное оборудование, а в марте 2018 года анонсировала новый 72-кубитный квантовый процессор под названием Bristlecone.

В июне 2019 года директор лаборатории квантового искусственного интеллекта Google Хартмут Невен отчитался, что мощность их квантовых процессоров в настоящее время растет вдвое экспоненциально. Это было названо «законом Невана» и предполагает, что мы можем достичь точки квантового превосходства, когда квантовый компьютер может превзойти любой классический компьютер к концу 2019 года.

В октябре 2019 года команда инженеров Google опубликовала в Nature статью, в которой утверждала, что достигла квантового превосходства. В частности, учёные Google использовали квантовый процессор под названием Sycamore для выборки выходного сигнала псевдослучайной квантовой схемы. Sycamore потребовалось около 200 секунд, чтобы выполнить выборку одного экземпляра схемы миллион раз. Для сравнения, команда Google подсчитала, что классическому суперкомпьютеру потребуется около 10 000 лет для выполнения тех же вычислений. Далее команда пришла к выводу: — «Квантовые процессоры на основе сверхпроводящих кубитов теперь могут выполнять вычисления за пределами досягаемости самых быстрых классических суперкомпьютеров, доступных сегодня. Этот эксперимент знаменует собой первое вычисление, которое может быть выполнено только на квантовом процессоре. Таким образом, квантовые процессоры достигли режима квантового превосходства».

Это откровение инженеров Google было большой новостью, но вскоре вызвало споры. IBM опубликовала сообщение в блоге, сказав, что вычисления в эксперименте Google могут быть выполнены на классическом компьютере за два с половиной дня, а не за 10 000 лет. И по утверждению IBM: — «Поскольку первоначальное значение термина «квантовое превосходство», предложенное Джоном Прескиллом в 2012 году, заключалось в описании точки, в которой квантовые компьютеры могут делать то, что не могут классические компьютеры — эта граница ещё не преодолена».

Alibaba

В Китае главным интернет-гигантом является Alibaba, а не Google. А в июле 2015 года они объединилась с Китайской Академией Наук, чтобы сформировать «Лабораторию квантовых вычислений CAS — Alibaba». Как пояснил профессор Цзянвэй Пан, их цель состоит в том, чтобы «провести передовые исследования систем, которые кажутся наиболее многообещающими для реализации практических приложений квантовых вычислений, а также разрушить узкие места закона Мура и классических вычислений». Вы можете посетить сайт лаборатории здесь.

Как и IBM, Alibaba сделала экспериментальный квантовый компьютер доступным в Интернете. В частности, в марте 2018 года китайский гигант электронного бизнеса запустил своё «сверхпроводящее облако квантовых вычислений», чтобы обеспечить доступ к 11-кубитному квантовому компьютеру. Он был разработан с Китайской Академией Наук и позволяет пользователям запускать квантовые программы и загружать результаты.

Microsoft

Как и следовало ожидать, Microsoft тоже заинтересована в квантовых вычислениях и работает с некоторыми ведущими учёными и университетами мира. С этой целью Microsoft создала несколько лабораторий «Station Q», например лабораторию в Калифорнийском университете. В феврале 2019 года компания также анонсировала Microsoft Quantum Network, чтобы объединить вместе все партнёрские коалиции.

Ключевым элементом стратегии Microsoft является разработка квантовых компьютеров на основе «топологических кубитов», которые, по мнению компании, будут менее подвержены ошибкам (следовательно, для исправления ошибок потребуется меньшее количество системных ресурсов). Microsoft также считает, что топологические кубиты будет легче масштабировать для коммерческого применения. Согласно статье в Computer Weekly за май 2018 года, вице-президент Microsoft, отвечающий за квантовые вычисления, считает, что коммерческие квантовые компьютеры могут появиться на их облачной платформе Azure всего через пять лет.

Что касается программного обеспечения, то в декабре 2017 года Microsoft выпустила предварительную версию своего инструмента разработчика вычислительной техники. Его можно загрузить бесплатно, он включает язык программирования под названием Q# и симулятор квантовых вычислений. В мае 2019 года Microsoft сообщила, что собирается открыть исходный код инструмента разработчика. А в мае 2020 года компания анонсировала свой сервис облачных вычислений Azure Quantum.

Intel

Intel, как ведущий производитель микропроцессоров в мире, тоже работает над созданием микросхем для квантовых вычислений. Компания применяет два различных подхода. Одно из этих направлений проводится совместно с ведущим голландским пионером квантовых вычислений QuTech. 17 ноября 2017 года Intel объявила о поставке своему партнеру в Нидерландах тестового чипа на 17 кубитов. Затем, в январе 2018 года на выставке CES, компания объявила о поставке тестового квантового процессора на 49 кубитов под названием Tangle Lake.

Второе направление исследований Intel в области квантовых вычислений проводится исключительно внутри компании и включает в себя создание процессоров на основе технологии, называемой «спиновой кубит». Это важное нововведение, поскольку чипы спиновых кубитов производятся с использованием традиционных методов изготовления кремния Intel. В июне 2018 года Intel сообщила, что начала тестирование 26-спинового кубитного чипа.

Спиновые кубиты Intel имеют диаметр всего около 50 нанометров, или 1/1500 ширины человеческого волоса. Это означает, что, возможно, через десять лет Intel сможет производить крошечные квантовые процессоры, содержащие тысячи или миллионы кубитов. В отличие от обычных процессоров, их нужно охлаждать почти до абсолютного нуля. Но потенциал поистине захватывающий. Согласно разделу сайта Intel, посвященному квантовым вычислениям, компания нацелена на производство квантовых процессоров в течение десяти лет и ожидает, что технология начнет входить в свою «коммерческую фазу» примерно в 2025 году.

D-Wave Systems

D-Wave Systems — пионер квантовых вычислений, базирующийся в Канаде, и ещё в 2007 году продемонстрировавший 16-кубитный квантовый компьютер. В 2011 году компания продала 128-кубитную машину D-Wave One за 10 миллионов долларов американской военно-промышленной корпорации Lockheed Martin. В 2013 году — 512-кубитные D-Wave Two ведомству NASA и компании Google. К 2015 году D-Wave преодолела барьер в 1000 кубитов со своим D-Wave 2X, а в январе 2017 года продала свою первую 2000-кубитную машину D-Wave 2000Q фирме, специализирующейся в кибербезопасности, Temporal Defense Systems.

Читая этот список достижений, вы, возможно, пришли к выводу, что D-Wave должен быть ведущим производителем квантовых компьютеров в мире. В конце концов, это единственная компания, которая торгует такими машинами. Тем не менее, работа компании остаётся спорной. Это потому, что их оборудование основано на «адиабатическом» процессе, называемом «квантовый отжиг», который другие пионеры отвергли как «ограничительный» и «тупиковый». IBM, например, использует подход к квантовым вычислениям «на основе затвора», который позволяет ей управлять кубитами аналогично тому, как транзистор управляет потоком электронов в обычном микропроцессоре. Но в системе D-Wave такого контроля нет.

Вместо этого квантовый компьютер D-Wave использует факт того, что все физические системы стремятся к состояниям с минимальной энергией. Так, например, если вы заварите чашку чая и отлучитесь по делам — когда вы вернетесь, она будет холодной, потому что содержимое стремится к минимальному энергетическому состоянию. Кубиты в системе D-Wave также этому подвержены, и поэтому компания использует своё оборудование для решения проблем оптимизации, которые могут быть выражены как «проблемы минимизации энергии». Это ограничивает в возможностях, но всё же позволяет аппаратному обеспечению выполнять определенные алгоритмы намного быстрее, чем классический компьютер. Вы можете ознакомиться с видео, в котором D-Wave объясняет свой подход к квантовым вычислениям.

В августе 2016 года в статье Physical Review X сообщалось, что некоторые алгоритмы работают до 100 миллионов раз быстрее на D-Wave 2X, чем на одноядерном классическом процессоре. Одним из авторов этого исследования оказался технический директор Google. Всё это говорит о том, что мнение о ценности работы D-Wave для развития квантовых вычислений остаётся спорным.

Компания продолжает продвигать свои квантовые компьютеры. В октябре 2018 года D-Wave запустила облачную квантовую среду приложений под названием Leap. Она обеспечивает доступ в реальном времени к квантовому компьютеру D-Wave 2000Q, а в марте 2019 года доступ был расширен, чтобы предоставить такую возможность Японии и всей Европе.

Rigetti

Ещё один игрок в области квантовых вычислений — это стартап под названием Rigetti. В компании уже работает более 120 сотрудников, и они собрали 19-кубитный квантовый компьютер доступный онлайн через свою среду разработки под названием Forest.

Quantum Circuits

Другой стартап — Quantum Circuits, основанный ведущим профессором квантовых вычислений Робертом Шёлкопфом и другими коллегами из Йельского университета. Компания привлекла 18 миллионов долларов венчурного капитала и планирует «победить гигантов компьютерной индустрии» в гонке за создание жизнеспособного квантового компьютера.

IonQ

IonQ — специализируется в области квантовых вычислений с захваченными ионами. Компания утверждает, что её технология «сочетает в себе непревзойденную физическую производительность, идеальную репликацию кубитов, возможность подключения к оптическим сетям и высокооптимизированные алгоритмы», чтобы «создать квантовый компьютер, который является столь же масштабируемым, сколь и мощным и который будет поддерживать широкий спектр приложений в самых разных отраслях». Если вы хотите узнать больше о квантовых вычислениях, на сайте IonQ есть отличное учебное пособие.
Xanadu

Xanadu разрабатывает фотонные квантовые вычисления, интегрируя «квантовые кремниевые фотонные чипы в существующее оборудование для создания полнофункциональных квантовых вычислений». Как отмечает компания, по сравнению с другими технологиями кубитов, «фотоны очень стабильны и почти не подвержены влиянию случайного шума от тепла. Мы используем фотонные чипы для генерации, управления и измерения фотонов способами, обеспечивающими чрезвычайно быстрые вычисления».
Honeywell

Еще одна компания, которая применяет способ квантовых вычислений с захваченными ионами, является Honeywell. У компании огромный опыт в области бизнес-вычислений. В июне 2020 года Honeywell объявила о создании самого высокопроизводительного квантового компьютера в мире. Остальные компании отнеслись к этому скептически. Но, тем не менее, это ещё одна важная разработка — особенно потому, что как стало известно, американский финансовый холдинг JPMorgan Chase уже экспериментирует со этой системой для разработки приложений финансовых услуг, включая обнаружение мошенничества и торговлю под управлением ИИ.

Amazon

Amazon не объявила о разработке аппаратного или программного обеспечения для квантовых вычислений. Однако, 2 декабря 2019 года гигант запустил ряд квантовых сервисов Amazon Web Services. К ним относится Amazon Bracket, который позволяет учёным, исследователям и разработчикам начинать эксперименты с квантовыми компьютерами от нескольких поставщиков оборудования. В частности, клиенты могут получить доступ к оборудованию от Rigetti, Ion-Q и D-Wave Systems, что означает, что они могут экспериментировать с системами, основанными на трёх различных технологиях кубитов.

Помимо Bracket, Amazon также запустила лабораторию Amazon Quantum Solutions Lab. Она предназначена, чтобы помочь компаниям «подготовиться к квантовым вычислениям», позволяя им работать с ведущими экспертами. Таким образом, ключевая вещь, которую Amazon делает со своими предложениями по квантовым вычислениям, — это действовать в качестве облачного брокера. То есть стать посредником между производителями квантовых компьютеров и теми, кто захочет воспользоваться их мощностями.

Разработчики программного обеспечения для квантовых компьютеров


Даже лучшее всего оборудованный квантовый компьютер не сможет использоваться без соответствующего программного обеспечения, и многие из производителей этих машин разрабатывают собственное. Тем не менее, количество стороннего ПО под квантовые компьютеры постоянно растет.
1QBit

1QBit сотрудничает с крупными компаниями и «ведущими поставщиками оборудования для решения отраслевых задач в области оптимизации, моделирования и машинного обучения». Компания разрабатывает программное обеспечение как для классических, так и для квантовых процессоров.
CQC

Cambridge Quantum Computing разрабатывает ПО для квантовых компьютеров под решения «самых интригующих задач» в таких областях, как квантовая химия, квантовое машинное обучение и квантовая кибербезопасность. В число клиентов входят компании, входящие в «некоторые из крупнейших в мире химических, энергетических, финансовых и материаловедческих организаций», которые пробуют использовать возможности квантовых вычислений.
QC Ware

QC Ware разрабатывает «корпоративное программное обеспечение и услуги для квантовых вычислений» с клиентами, включая Airbus, BMW и Goldman Sachs, и партнерами по оборудованию, включая AWS, D-Wave Systems, Google, IBM, Microsoft и Rigetti.
QSimulate

QSimulate разрабатывает ПО, чтобы «использовать возможности количественного моделирования для решения насущных проблем в фармацевтической и химической областях».
Rahko

Rahko создаёт ПО, которое предназначено для использования квантового машинного обучения (квантового ИИ) под решения задач квантовой химии.
Zapata

Zapata работает со своими клиентами над разработкой ПО для квантовых компьютеров под решения сложных вычислительных задач в таких областях, как химия, финансы, логистика, фармацевтика, машиностроение и материалы.

Пользователи приложений квантовых компьютеров


Приложения для квантовых компьютеров включают молекулярное моделирование (также известное как квантовая химия), оптимизацию логистики, финансовое моделирование, криптографию и обучение искусственного интеллекта. Некоторые крупные предприятия уже активно изучают — что именно квантовые машины смогут сделать для их исследований и разработок, продуктов и услуг, а также их чистой прибыли. Я приведу несколько примеров.

Daimler работает как с IBM, так и с Google, чтобы оптимизировать маршруты доставки автомобилей или поток запчастей через фабрики. Компания также изучает, как квантовые компьютеры можно использовать для моделирования химических структур и реакций внутри батарей, чтобы помочь в усовершенствовании электромобилей.

Другой автомобильный гигант — Volkswagen работает с Google и с D-Wave Systems, чтобы применить квантовые компьютеры в решении проблем оптимизации транспортного потока и в разработке лучших аккумуляторов.

В финансовом секторе, JPMorgan работает с IBM, чтобы изучить, как квантовые компьютеры смогут помочь в разработке торговых стратегий, оптимизации портфеля, ценообразования на активы и анализа рисков. Другой финансовый конгломерат — Barclays участвует в сети IBM Q Network, чтобы выяснить, можно ли использовать квантовые компьютеры для оптимизации расчётов по крупным пакетам финансовых транзакций.

В 2011 году аэрокосмический гигант Lockheed Martin стал первым покупателем квантового компьютера, произведенного D-Wave Systems, и продолжил изучение возможности использования этой технологии для приложений, включая управление воздушным движением и проверку системы. Airbus аналогичным образом исследует, как квантовые компьютеры могут ускорить его исследовательскую деятельность, и вложил средства в компанию QC Ware, производящую программное обеспечение для квантовых машин.

Тем временем Accenture Labs и биотехнологическая компания Biogen сотрудничают с 1QBit, исследуя, как можно ускорить открытие лекарств, применив квантовые компьютеры для молекулярных сравнений. В сентябре 2017 года IBM использовала своё 7-кубитное оборудование для моделирования структуры трёхатомной молекулы гидрида бериллия. В октябре 2017 года Google и Rigetti также анонсировали OpenFermion, программу для моделирования химических процессов на квантовом компьютере.

Квантовое будущее


Я надеюсь, что эта статья продемонстрировала вам, как квантовые вычисления довольно быстро превращаются из фантазий в реальность. Разумно предположить, что в 20-х годах из облака будут доступны квантовые суперкомпьютеры, которым найдут практичное применение и это будет стоить недорого. Вполне возможно, что через десять лет основные службы интернет-поиска и облачного ИИ будут использовать возможности квантовых машин, а большинство пользователей этого и не осознают.

Для тех, кто хочет узнать больше, приведу несколько избранных источников для получения дополнительной информации:

  • Кевин Хартнет «Рассвет квантовых вычислений», Quanta Magazine, 18 июня 2019 г.
  • Статья Масуд Мохсени 2017 года «Коммерциализация ранних квантовых технологий»
  • Статья Джона Прескилла «Квантовые вычисления в эпоху NISQ и за её пределами» от 2018 года
  • Сайт IonQ Technology
  • Видео D-Wave Systems, объясняющее квантовый отжиг
  • Сайт IBM-Q
  • Сайт квантовых вычислений Microsoft
  • Сайт Google Quantum AI
  • Новостной блог Intel Quantum Computing
  • Сайт D-Wave Systems
  • Сайт Quantum Circuits
  • Сайт HQS Quantum Simulations

В книге «Digital Genesis» Кристофера Барнатта — автора этой статьи и сайта explainingcomputers.com, вы сможете прочитать о квантовых вычислениях и многом другом, связанном с будущими вычислительными разработками, например органическими компьютерами.

Что такое квантовый компьютер

Вы все привыкли к нашим компьютерам: утром читаем новости со смартфона, днем работаем с ноутбуком, а вечером смотрим фильмы на планшете. Все эти девайсы объединяет одно — кремниевый процессор, состоящий из миллиардов транзисторов. Принцип работы таких транзисторов достаточно прост — в зависимости от подведенного напряжения мы получаем на выходе другое напряжение, которое интерпретируется или как логический 0, или как логическая 1. Для того, чтобы проводить операции деления, есть битовый сдвиг — если у нас, к примеру, было число 1101, то после сдвига на 1 бит влево будет 01101, а если теперь сдвинуть его на 1 бит вправо — будет 01110. И основная проблема кроется в том, что для все того же деления может понадобиться несколько десятков таких операций. Да, с учетом того, что транзисторов миллиарды, такая операция занимает наносекунды, но вот если операций много — мы теряем на эти вычисления время.

Принцип работы квантовых компьютеров

Квантовый компьютер же предлагает совершенно другой способ вычислений. Начнем с определения:

Квантовый компьютер — вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных.

Понятнее явно не стало. Квантовая суперпозиция говорит нам о том, что система с какой-то долей вероятности существует во всех возможных для нее состояниях (при этом сумма всех вероятностей, разумеется, равна 100% или 1). Разберем это на примере. Информация в квантовых компьютерах хранится в кубитах — если обычные биты могут иметь состояние 0 или 1, то кубит может иметь состояние 0, 1, и 0 и 1 одновременно. Поэтому если мы имеем 3 кубита, к примеру 110, то это выражение в битах равносильно 000, 001, 010, 011, 100, 101, 110, 111.

Что это нам дает? Да все! К примеру, у нас есть циферный пароль из 4 символов. Как будет его взламывать обычный процессор? Простым перебором от 0000 до 9999. 9999 в двоичной системе имеет вид 10011100001111, то есть для его записи нам нужно 14 бит. Поэтому если мы имеем квантовый ПК с 14 кубитами — мы уже знаем пароль: ведь одно из возможных состояний такой системы и есть пароль! В результате все задачи, которые сейчас сутками считают даже суперкомпьютеры, на квантовых системах будут решаться моментально: нужно найти вещество с определенными свойствами? Не проблема, сделайте систему с таким же количеством кубитов, сколько у вас требований к веществу — и ответ уже будет у вас в кармане. Нужно создать ИИ (искусственный интеллект? Проще некуда: пока обычный ПК будет перебирать все комбинации, квантовый компьютер сработает молниеносно, выбрав лучший ответ.


Казалось бы, все здорово, но есть одна важная проблема — как нам узнать результат вычислений? С обычным ПК все просто — мы можем взять и считать его, напрямую подключившись к процессору: логические 0 и 1 там совершенно определенно интерпретируются как отсутствие и наличие заряда. Но вот с кубитами такое не пройдет — ведь в каждый момент времени он находится в произвольном состоянии. И тут нам на помощь приходит квантовая запутанность. Ее суть заключается в том, что можно получить пару частиц, которые связаны друг с другом (говоря научным языком — если, к примеру, проекция спина одной запутанной частицы отрицательна, то другой обязательно будет положительной). Как это выглядит на пальцах? Допустим, у нас есть две коробки, в которых лежит по бумажке. Мы разносим коробки на любое расстояние, открываем одну из них и видим, что бумажка в ней в горизонтальную полоску. Это автоматически означает, что другая бумажка будет в вертикальную полоску. Но вот проблема в том, что как только мы узнали состояние одной бумажки (или частицы), квантовая система рушится — неопределенность исчезает, кубиты превращаются в обычный биты.

Поэтому вычисления на квантовых компьютерах по сути одноразовы: мы создаем систему, которая состоит из запутанных частиц (где находятся их вторые «половинки» мы знаем). Мы проводим вычисления, и после этого «открываем коробку с бумажкой» — узнаем состояние запутанных частиц, а значит и состояние частиц в квантовом компьютере, а значит и результат вычислений. Так что для новых вычислений нужно снова создавать кубиты — просто «закрыть коробку с бумажкой» не получится — мы ведь уже знаем, что нарисовано на бумажке.

Возникает вопрос — раз квантовый компьютер может моментально подбирать любые пароли — как защитить информацию? Неужели с приходом таких устройств исчезнет конфиденциальность? Конечно же нет. На помощь приходит так называемое квантовое шифрование: оно основано на том, что при попытке «прочесть» квантовое состояние оно разрушается, что делает любой взлом невозможным.

Домашний квантовый компьютер

Ну и последний вопрос — раз квантовые компьютеры такие классные, мощные и не взламываемые — почему мы ими не пользуемся? Проблема банальна — невозможность реализовать квантовую систему в обычных домашних условиях. Для того, чтобы кубит мог существовать в состоянии суперпозиции бесконечно долго, нужны крайне специфические условия: это полный вакуум (отсутствие других частиц), температура, максимально близкая к нулю по Кельвину (для сверхпроводимости), и полное отсутствие электромагнитного излучения (для отсутствия влияния на квантовую систему). Согласитесь, создать такие условия дома мягко говоря трудновато, а ведь малейшее отклонение приведет к тому, что состояние суперпозиции исчезнет, и результаты вычислений будут неверными. Вторая проблема — это заставить кубиты взаимодействовать друг с другом — при взаимодействии их время жизни катастрофически уменьшается. В итоге самый максимум на данный день — это квантовые компьютеры с парой десятков кубитов.

Однако, есть квантовые компьютеры от D-Wave, которые имеют 1000 кубитов, но, вообще говоря, настоящими квантовыми компьютерами они не являются, ибо не используют принципы квантовой запутанности, поэтому они не могут работать по классическим квантовым алгоритмам:

Но все же такие устройства оказываются ощутимо (в тысячи раз) мощнее обычных ПК, что можно считать прорывом. Однако заменят пользовательские устройства они ох как не скоро — для начала нам нужно или научиться создавать условия для работы таких устройств дома, или же наоборот, «заставить» работать такие устройства в привычных нам условиях. Шаги во втором направлении уже были сделаны — в 2013 году был создан первый двухкубитный квантовый компьютер на алмазе с примесями, работающий при комнатной температуре. Однако увы — это всего лишь опытный образец, да и 2 кубита — маловато для вычислений. Так что ждать квантовых ПК еще очень и очень долго.

Что такое квантовые компьютеры и почему вам это нужно?

Прошлой осенью Google объявил о достижении квантового превосходства. Если это звучит немного абстрактно и не актуально для обычного пользователя, подумайте еще раз. По сути, команда Google использовала квантовый компьютер для решения проблемы, которая сбила бы с толку даже самый шикарный суперкомпьютер. Впечатляет, согласитесь?

Более того, состояние квантовых вычислений имеет прямое отношение к безопасности ваших данных.В конце концов, многие методы защиты в цифровом мире основаны не на том, чтобы их невозможно было взломать, а на том, что их невозможно взломать за разумный промежуток времени . Здесь мы взглянем на новую игрушку Google и решим, стоит ли нам беспокоиться о том, что киберпреступники однажды используют ее для взлома нашей жизни.

Что такое квантовый компьютер?

Основное различие между квантовыми компьютерами и традиционными транзисторами, которые мы все используем сегодня, заключается в том, как они обрабатывают данные. Знакомые нам устройства - от смартфонов и ноутбуков до шахматного суперкомпьютера Deep Blue - хранят все в битах , так называется наименьшая единица информации.Бит может принимать одно из двух значений: 0 или 1.

Рассмотрим лампочку: она горит (1) или не горит (0). Файл на диске компьютера выглядит как набор лампочек, одни горят, другие выключены. Вооружившись множеством таких лампочек, вы можете кодировать информацию, например фразу «Альберт был здесь» или изображение Моны Лизы.

Когда устройство с двумя состояниями решает проблему, оно должно постоянно включать и выключать эти лампочки, записывая и стирая результаты промежуточных вычислений, чтобы они не засоряли его память.Это требует времени, поэтому, если задача очень сложная, компьютер будет долго думать.

Квантовые компьютеры, в отличие от своих старших собратьев, хранят и обрабатывают данные с помощью квантовых битов, или кубитов, для краткости . Их можно не только включать и выключать, но и находить в переходном состоянии или даже одновременно выключать и . Продолжая аналогию с лампочкой, кубит похож на лампу, которую вы выключили, но продолжает мигать. Или как кошка Шредингера, которую считают одновременно и живой, и мертвой.

Включенные и выключенные лампочки в квантовом компьютере экономят огромное количество времени. Поэтому квантовый компьютер может решать сложные задачи намного быстрее, чем даже самое мощное традиционное устройство. Google утверждает, что его квантовая машина Sycamore выполнила вычисления чуть более чем за 3 минуты, что заняло бы у обычного суперкомпьютера 10 000 лет. Вот где появляется термин «превосходство».

Квантовые компьютеры в реальной жизни

Мы установили, что квантовые компьютеры довольно хорошо умеют решать очень сложные задачи.Итак, почему эпоха транзисторов еще не вошла в учебники истории? Потому что квантовая технология еще молода, а состояние «мигающей лампочки» очень нестабильно - не говоря уже о том, что чем больше кубитов содержит система, тем сложнее поддерживать стабильность. А выполнимость сложных вычислений зависит, в том числе, от количества кубитов: с двумя лампочками, даже топовыми, Мона Лизу не нарисовать.

Другие причины не позволяют квантовым компьютерам полностью вытеснить своих предшественников.Имейте в виду, что они обрабатывают информацию принципиально другим способом. Это означает, что программное обеспечение для них нужно разрабатывать с нуля. Вы не можете просто установить Windows на квантовый компьютер; вам понадобится совершенно новая квантовая операционная система и квантовые приложения.

Хотя ученые и ИТ-гиганты погружаются в квантовые воды, в настоящее время квантовые компьютеры работают примерно как внешние жесткие диски, подключенные к обычным компьютерам и управляемые ими. Они используются для решения узкого круга задач, таких как моделирование атома водорода или поиск в базах данных.Несмотря на мощь квантовых вычислений, вы пока не можете использовать их, чтобы выйти в Интернет и посмотреть видео о кошках, катающихся на скейтборде.

Тем не менее, многие считают, что будущее принадлежит квантовым вычислениям. Первые квантовые компьютеры появились на рынке еще в 1999 году. Сегодня крупные организации, такие как Google, Honeywell и IBM (последняя уже предлагает клиентам облачный доступ к своему квантовому компьютеру), Toshiba, Alibaba и Baidu вкладывают значительные средства в эту область. .

Однако стоит отметить, что задача, решенная Google, не имеет практического применения, кроме демонстрации возможностей квантовых вычислений.Мы не будем вдаваться в подробности, потому что это действительно очень сложно и не очень необходимо для обычного пользователя. Но если вы хотите изучить детали, взгляните на отчет Google.

Между прочим, не все согласны с заявлением Google о 10 000-летнем сроке службы. IBM, например, уверена, что суперкомпьютер сможет решить ту же задачу если не за 3 минуты, то немногим более 48 часов. Но все же, даже если эта оценка будет более точной, даже нематематики заметят заметную разницу в скорости между квантовыми и традиционными компьютерами.

Квантовые компьютеры (пока) не представляют угрозы

Как видите, квантовые компьютеры по-прежнему являются для ученых скорее игрушкой, чем потребительскими устройствами или хакерскими инструментами. Но это, конечно, не означает, что они не станут более практичными (и опасными) в будущем. Имея это в виду, эксперты по безопасности данных уже составляют планы сражений. Но об этом в следующий раз.

.

Квантовый компьютер - Simple English Wikipedia, бесплатная энциклопедия

Сфера Блоха представляет собой кубит, фундаментальный строительный блок квантовых компьютеров.

Квантовый компьютер - это модель того, как построить компьютер. Идея состоит в том, что квантовые компьютеры могут использовать определенные явления из квантовой механики, такие как суперпозиция и запутанность, для выполнения операций с данными. Основной принцип квантовых вычислений заключается в том, что квантовые свойства могут использоваться для представления данных и выполнения над ними операций. [1] Теоретическая модель - это квантовая машина Тьюринга, также известная как универсальный квантовый компьютер.

Идея квантовых вычислений еще очень нова. Были проведены эксперименты. В них над кубитами было выполнено очень небольшое количество операций ( qu antum bit ). Как практические, так и теоретические исследования продолжаются с интересом, и многие национальные правительственные и военные финансовые агентства поддерживают исследования в области квантовых вычислений для разработки квантовых компьютеров как для гражданских, так и для военных целей, таких как криптоанализ. [2]

Современные компьютеры, называемые «классическими» компьютерами, хранят информацию в двоичном формате; каждый бит либо включен, либо выключен. В квантовых вычислениях используются кубиты, которые, помимо того, что они могут быть включены или выключены, могут быть как включенными, так и выключенными, что является способом описания суперпозиции, до тех пор, пока не будет выполнено измерение. Состояние части данных на обычном компьютере известно с уверенностью, но квантовые вычисления используют вероятности. Были построены только очень простые квантовые компьютеры, хотя были изобретены более крупные конструкции.Квантовые вычисления используют особый тип физики, квантовую физику.

Если удастся построить крупномасштабные квантовые компьютеры, они смогут решать некоторые проблемы намного быстрее, чем любой компьютер, существующий сегодня (например, алгоритм Шора). Квантовые компьютеры отличаются от других компьютеров, таких как ДНК-компьютеры и традиционные компьютеры на транзисторах. Некоторые вычислительные архитектуры, такие как оптические компьютеры [3] , могут использовать классическую суперпозицию электромагнитных волн.Люди думают, что без квантово-механических ресурсов, таких как запутанность, экспоненциальное преимущество над классическими компьютерами невозможно. [4] Квантовые компьютеры не могут выполнять функции, которые теоретически не могут быть вычислены классическими компьютерами, другими словами, они не изменяют тезис Черча-Тьюринга. Однако они могли бы делать многие вещи намного быстрее и эффективнее.

.

Что такое квантовый компьютер?

Квантовый компьютер - это любое устройство, использующее квантово-механические явления для выполнения алгоритмов. Поскольку квантовые компьютеры имеют принципиально другие вычислительные свойства, чем обычные компьютеры, данные, хранящиеся в квантовых компьютерах, называются кубитами, а не битами. В обычных компьютерах данные представлены микроскопическими бороздками на жестком диске. В квантовом компьютере данные представлены квантовыми свойствами данной молекулы или набора молекул.

Мужчина держит компьютер

Вместо того, чтобы выполнять вычисления, извлекая данные с жесткого диска и обрабатывая их с помощью интегральной схемы, заполненной логическими вентилями, квантовые компьютеры обрабатывают данные, бомбардируя молекулу, содержащую информацию, короткими импульсами излучения.Каждый цикл бомбардировки представляет собой алгоритмическую операцию над данными, содержащимися в молекуле. Когда алгоритм завершается, измеряется квантовое состояние молекулы, процесс, который сам по себе искажает конечный результат. Это связано с принципиально неопределенной природой квантовой механики.

Чтобы обойти эту трудность, алгоритмы квантовых вычислений запускаются несколько раз, и средневзвешенное значение выходных данных асимптотически приближается к правильному ответу.Поскольку квантово-механические явления по своей природе скорее вероятностные, чем детерминированные, однозначный ответ с первого раза невозможен.

Квантовые компьютеры обладают определенными возможностями, которых не хватает классическим компьютерам. Квантовые вычисления позволяют быстро разложить большие числа на множители (явная угроза для традиционных криптографических методов), более точное моделирование квантовых явлений и очень эффективный поиск в базе данных.

Для любого пространства поиска размером n узлов, где каждый узел представляет возможное решение проблемы, существует только одно возможное решение, и каждый узел должен проверяться индивидуально на свойства, соответствующие правильному решению, квантовые вычисления предлагают фантастическое ускорение.В обычных компьютерах среднее время поиска - это время, необходимое для проверки каждого узла, умноженное на количество узлов ( n ), деленное на два (вероятно, решение будет найдено примерно в середине поиска). В квантовых компьютерах среднее время поиска - это время, необходимое для проверки каждого узла, умноженное на квадратный корень из n . Это дает огромное преимущество, которое становится еще более впечатляющим, когда мы рассматриваем более крупные проблемы.

Пока невозможно представить себе все применения зрелых квантовых компьютеров.Наибольшее количество кубитов, когда-либо содержащихся в одной системе квантовых вычислений, равно 7. Поскольку исследования квантовых вычислений быстро продолжаются с финансированием на многие миллионы долларов, это будет лишь вопросом времени, когда произойдет критический прорыв и будут изобретены впечатляющие приложения.

.

Введение в квантовые вычисления - Microsoft Quantum

  • 3 минуты на чтение

В этой статье

Microsoft Quantum Development Kit (QDK) - это набор инструментов с открытым исходным кодом, предназначенных для помощи разработчикам в изучении квантовых алгоритмов и написании квантовых программ. Квантовые вычисления обещают решить некоторые из самых серьезных проблем нашей планеты - в областях окружающей среды, сельского хозяйства, здравоохранения, энергетики, климата, материаловедения и других, с которыми мы еще не сталкивались.

С некоторыми из этих проблем возникают проблемы даже на наших самых мощных компьютерах. Хотя квантовая технология только начинает влиять на мир вычислений, она может иметь далеко идущие последствия и изменить наше представление о вычислениях.

Что такое квантовые вычисления?

В современном использовании слово «квант» означает наименьшую возможную дискретную единицу любого физического свойства, обычно относящуюся к свойствам атомных или субатомных частиц. Квантовые компьютеры используют реальные квантовые частицы, искусственные атомы или коллективные свойства квантовых частиц в качестве единиц обработки и представляют собой большие, сложные и дорогие устройства.

Используя уникальное поведение квантовой физики и применяя его к вычислениям, квантовые компьютеры вводят новые концепции в традиционные методы программирования, используя такие поведения квантовой физики, как суперпозиция, запутанность и квантовая интерференция.

На что способен квантовый компьютер?

Квантовый компьютер - это не суперкомпьютер, который может все делать быстрее, но есть несколько областей, в которых квантовые компьютеры работают исключительно хорошо.

Квантовое моделирование

Поскольку квантовые компьютеры используют квантовые явления в вычислениях, они хорошо подходят для моделирования других квантовых систем.Фотосинтез, сверхпроводимость и сложные молекулярные образования - примеры квантовых механизмов, которые могут моделировать квантовые программы.

Криптография и алгоритм Шора

В 1994 году Питер Шор показал, что масштабируемый квантовый компьютер может взломать широко используемые методы шифрования, такие как алгоритм RSA. Классическая криптография основана на неразрешимости таких проблем, как факторизация целых чисел или дискретные логарифмы, многие из которых могут быть решены более эффективно с помощью квантовых компьютеров.

Поиск и алгоритм Гровера

В 1996 году Лов Гровер разработал квантовый алгоритм, который значительно ускорил поиск неструктурированных данных, выполняя поиск за меньшее количество шагов, чем любой классический алгоритм.

Квантовые вычисления и оптимизация

Квантовые алгоритмы используют квантовые принципы для повышения скорости и точности, но реализуются в классических компьютерных системах. Такой подход позволяет разработчикам использовать возможности новых квантовых методов сегодня, не дожидаясь появления квантового оборудования, которое все еще является новой отраслью.

Оптимизация - это процесс поиска лучшего решения проблемы с учетом желаемого результата и ограничений. Такие факторы, как стоимость, качество или время производства, влияют на важные решения, принимаемые промышленностью и наукой. Квантовые алгоритмы оптимизации, работающие на современных классических компьютерах, могут найти решения, которые до сих пор были невозможны. Помимо оптимизации транспортного потока для уменьшения загруженности, существует назначение выхода на посадку в самолетах, доставка пакетов, планирование заданий и многое другое.Благодаря достижениям в области материаловедения появятся новые формы энергии, батареи большей емкости, а также более легкие и прочные материалы.

Квантовое машинное обучение

Машинное обучение на классических компьютерах революционизирует мир науки и бизнеса. Однако высокая вычислительная стоимость обучения моделей препятствует развитию и масштабам этой области. В области квантового машинного обучения изучается, как разработать и реализовать квантовое программное обеспечение, которое позволяет машинному обучению работать быстрее, чем классические компьютеры.

Quantum Development Kit поставляется с библиотекой квантового машинного обучения, которая дает вам возможность проводить эксперименты с гибридным квантовым / классическим машинным обучением. Библиотека включает образцы и учебные пособия, а также предоставляет необходимые инструменты для реализации нового гибридного квантово-классического алгоритма, схемно-ориентированного квантового классификатора, для решения задач контролируемой классификации.

Q # и Microsoft Quantum Development Kit (QDK)

Q # - это язык программирования Microsoft с открытым исходным кодом для разработки и выполнения квантовых алгоритмов.Он является частью QDK, полнофункционального комплекта разработки для Q #, который вы можете использовать со стандартными инструментами и языками для разработки квантовых приложений, которые можно запускать в различных средах, включая встроенный полнофункциональный квантовый симулятор.

Существуют расширения для Visual Studio и VS Code, а также пакеты для использования с Python и Jupyter Notebook.

QDK включает стандартную библиотеку, а также специализированные библиотеки химии, машинного обучения и числовых данных.

Документация включает руководство по языку Q #, учебные пособия и образцы кода, которые помогут вам быстро начать работу, а также обширные статьи, которые помогут вам глубже погрузиться в концепции квантовых вычислений.

Партнеры Microsoft по квантовому оборудованию

Microsoft сотрудничает с производителями квантового оборудования, чтобы предоставить разработчикам облачный доступ к квантовому оборудованию. Используя платформу Azure Quantum и язык Q #, разработчики смогут исследовать квантовые алгоритмы и запускать свои квантовые программы на различных типах квантового оборудования.

IonQ и Honeywell используют процессоры на основе захваченных ионов , использующие отдельные ионы, захваченные в электронном поле, тогда как QCI использует сверхпроводящие схемы.

Следующие шаги

Ключевые концепции квантовых вычислений Быстрый старт

.

Как работает квантовый компьютер | Наука | Углубленный отчет о науке и технологиях | DW

Это знаменует собой огромный прорыв в разработке квантовых компьютеров: группа исследователей, созданная под руководством Джона Мартиниса из Калифорнийского университета в Санта-Барбаре, сообщила, что благодаря собственному квантовому компьютеру добилась превосходства в вычислительной мощности над крупнейшими суперкомпьютерами мира. Исследователи при поддержке Google представили свои результаты 23 октября в журнале Nature.

Они сообщают, что квантовый компьютер решил арифметическую задачу за 200 секунд ... для чего обычному суперкомпьютеру потребовалось бы 10 000 лет. Затем IBM опровергла это заявление, заявив, что ее суперкомпьютер Summit, в настоящее время самый быстрый в мире, мог бы сделать то же самое за 2,5 дня. В любом случае квантовый компьютер все еще был быстрее.

Итак, какая нам от этого польза? И вообще, что такое квантовый компьютер? Вот некоторые важные моменты, касающиеся, по общему признанию, сложной технологии:

битов и кубитов

Наш текущий компьютерный мир - цифровой.Это означает, что он состоит из двоичных цифр или «битов». На практике эти биты могут иметь значение 0 или 1, которые представляют состояние электронного заряда на транзисторах и микросхемах.

В мире квантовой физики все становится намного сложнее. Здесь мы говорим о «кубитах» или квантовых битах. Они не только принимают состояния 0 и 1 одновременно, но также и все состояния между ними.

Чтобы лучше проиллюстрировать эту идею, представьте себе монету. При использовании цифрового бита монета оказывается либо орлом, либо решкой ⁠, то есть 0 или 1.

Теперь для кубита представьте монету, которая вращается на столе. Он еще не упал, поэтому вы не можете решить, решка или решка.

Эрвин Шредингер описал этот парадокс в 1935 году на примере кошки, которая находится в ящике вместе с радиоактивным веществом и некоторым ядом: в определенный момент времени невозможно сказать, мертва кошка или жива. Следовательно, он поддерживает оба состояния одновременно. Только когда вы открываете ящик, кошка принимает фиксированное состояние - либо она еще жива, либо уже умерла.В физике это происходит во время измерения - затем квантовое состояние заканчивается.

Эти две могут стать запутанными квантовыми системами, если их поместить в два разных ящика.

Квантовая запутанность

Это явление невозможно понять с помощью традиционной физической логики. Альберт Эйнштейн описал это как «жуткий отдаленный эффект»: Две квантовые системы (например, кубиты) коррелированы со своими состояниями - у них одинаковое состояние - но только до тех пор, пока их состояние не определено.

В нашей модели монеты это будет похоже на одновременное вращение двух монет. Оба, независимо от того, как далеко они находятся друг от друга, принимают одно и то же состояние. В тот момент, когда монета падает на бок и ее состояние фиксируется, квантовая запутанность схлопывается.

То же самое и с котом Шредингера: если бы у вас было два ящика по две кошки, между ними могло бы быть квантовое запутывание, но только до тех пор, пока ящики закрыты.

Подробнее: Как запутывание фотонов может защитить наш межпланетный Интернет

Экспоненциально увеличивающаяся вычислительная мощность

Поскольку кубиты могут принимать множество состояний одновременно, они также могут выполнять больше арифметических операций, чем обычные биты.

Теоретически вычислительная мощность квантовых компьютеров растет экспоненциально с увеличением количества кубитов. Поскольку кривая становится все круче и круче, достаточно лишь незначительно увеличить количество кубитов, чтобы добиться быстрого увеличения вычислительной мощности.

Однако на практике все выглядит иначе. Все работает только при соблюдении всех остальных условий. Частота ошибок должна быть минимальной. Квантовая запутанность между кубитами должна работать правильно. В противном случае даже самые мелкие неисправности приведут к выходу из строя вычислительной мощности.

«Люстра» содержит чип с кубитами.

Таким образом, задача разработчиков заключается не только в том, чтобы помещать в чип все больше и больше кубитов, но и в поддержании точности. Для этой цели Google разработал собственный процесс исправления ошибок. Он достигает точности 99,99%.

Подробнее: Ф. Дункан Холдейн о квантовых компьютерах, запутанности и доказательстве неправоты Эйнштейна

Как выглядит квантовый компьютер?

На первый взгляд квантовый компьютер напоминает гигантскую люстру из медных трубок и проводов - это тоже то, что специалисты называют конструкцией, люстрой.

Его ядро ​​содержит сверхпроводящий чип, на котором кубиты расположены как на шахматной доске. В квантовом компьютере Google 54 кубита, хотя один из них не работал.

Кубиты на кристалле представляют собой крошечные конденсаторы, сделанные из ниобия, химического элемента, такого же твердого, как титан. Их заряды, похожие на вращающиеся монеты, заставляют колебаться. Другими словами, у них нет фиксированных состояний. Между ними есть небольшие регулируемые стяжки. Они состоят из крошечных антенн, которые реагируют на микроволны, называемых резонаторами.

В общем, это означает, что сверхпроводящий чип находится в электромагнитном микроволновом поле.Он работает в условиях сильного холода, при температурах, близких к абсолютному нулю. Для квантового компьютера IBM, например, температура составляет 0,015 Кельвина.

Столь низкие температуры могут быть достигнуты только путем охлаждения чипа с помощью сжиженного гелия. На самом деле одного обычного гелия недостаточно. Инженеры используют холодильники для разбавления со смесью гелия-3 / гелия-4 для достижения чрезвычайно низких температур.

Но поддерживает ли он Linux?

Нет. Программное обеспечение для квантовых компьютеров ни в коем случае нельзя сравнивать с цифровыми бинарными компьютерами.Чтобы проверить производительность своих квантовых компьютеров, специалисты Google разработали сложную математическую задачу выборки случайных чисел, которая требует все более сложных и больших вычислительных мощностей. Классический компьютер быстро не справился бы с этим.

Провидцы надеются, что однажды квантовые компьютеры смогут взламывать даже самые сложные шифры. Они могли бы выполнять гораздо более качественное моделирование, стать ядром систем управления трафиком и других приложений для работы с большими данными.

Но это больше фантастика, чем наука. Пока нельзя предвидеть, что существующие квантовые компьютеры смогут взять на себя какие-либо полезные задачи, которые уже выполняют суперкомпьютеры.

Фундаментальные исследования

Исследования в настоящее время находятся на той стадии, когда эксперты показывают, что принцип работает. Если сравнивать развитие квантовых компьютеров с авиацией, это соответствовало бы экспериментам братьев Райт с самодельным планером. Мы далеко от пассажирского самолета.

Еще не доказано, например, что квантовый компьютер может стабильно работать в течение часов, дней или даже лет. Кроме того, квантовые компьютеры используют принципиально иную логику программирования, чем классические компьютеры. Программное обеспечение должно быть специально разработано для использования квантовых эффектов, которые может предложить машина. В противном случае это бесполезно.

На практике это означает, что программисты в настоящее время пишут программы исключительно для тестирования таких компьютеров - и для фундаментальных исследований - но не для решения задач, выходящих за рамки квантовой механики.И, вероятно, так будет и в ближайшие несколько десятилетий.

Подробнее: Нобелевская премия по физике: какое отношение бублики, кофейные чашки и крендели имеют к физике

  • Что нам делать с гелием?

    Гелий - это весело!

    Каким был бы наш мир без разноцветных шаров? Но, к счастью, гелия не так уж и мало. Полет на воздушных шарах - не единственная забавная часть: если вы откроете воздушный шар с гелием и наполните свой рот и горло благородным газом, вы услышите высокий голос.Это связано с низкой плотностью гелия. Звуковые волны распространяются не так, как воздух с воздухом.

  • Что нам делать с гелием?

    Гелий придает храбрости

    По крайней мере, это то, что было нужно Феликсу Баумгартнеру в 2012 году, когда он позволил наполненному гелием воздушному шару унести его в стратосферу. Он спрыгнул на Землю с парашютом с высоты 38 969 метров. Два года спустя американец Алан Юстас превзошел свой рекорд. 57-летний спортсмен прыгнул с 41419 метров.

  • Что нам делать с гелием?

    Не лучшая альтернатива

    Другой легкий газ - водород. На Земле он доступен практически в неограниченном количестве и пригоден для множества технических приложений. Однако Filling Zeppelins не входит в их число. Людям пришлось усвоить этот урок на собственном горьком опыте, когда в 1937 году в Лейкхерсте, США, взорвался «Гинденбург».

  • Что нам делать с гелием?

    Негорючие - значит безопасно!

    Сегодня дирижабли или дирижабли наполнены исключительно гелием.Он не горит, не ядовит и поэтому совершенно безопасен.

  • Что нам делать с гелием?

    Реактор будущего

    Сверхпроводящие змеевики охлаждаются гелием. Они используются везде, где необходимы сильные магнитные поля. Это ядерный термоядерный эксперимент Wendelstein 7-X. Здесь очень сильное магнитное поле удерживает горячую плазму на своем месте.

  • Что нам делать с гелием?

    Охлаждение гелием для ускорителей частиц

    В Европейской организации ядерных исследований (CERN) жидкий гелий также играет центральную роль.Он охлаждает сверхпроводящие магниты, удерживающие частицы на своем пути. В ЦЕРН работает самый большой в мире «холодильник».

  • Что нам делать с гелием?

    Защитный газ для сварки

    При сварке необходимо предотвращать окисление стали прямо при плавлении металла. В противном случае сварной шов сломается. Вот почему рабочие используют гелий в качестве инертного газа: они заполняют область вокруг сварного шва гелием, вытесняя весь нежелательный кислород и другие газы.

  • Что нам делать с гелием?

    Путешествие на большие глубины с гелием

    Газы, которые мы вдыхаем, обычно не ядовиты. Но это меняется с увеличением давления: азот становится наркотиком на глубине около 50 метров. Кислород становится нейротоксином под высоким давлением. Поэтому технические водолазы, работающие на глубине нескольких сотен метров, используют гелий в качестве дыхательного газа. Количество кислорода снижено до необходимого минимума.

  • Что нам делать с гелием?

    Нет МРТ без гелия

    Будем надеяться, что все дайверы вернутся здоровыми и им не придется проходить магнитно-резонансную томографию.Аппараты МРТ также нуждаются в гелии для охлаждения своих сверхпроводящих катушек.

    Автор: Фабиан Шмидт


.

Квантовый компьютер

Квантовый компьютер - это любое вычислительное устройство, которое напрямую использует явные квантово-механические явления, такие как суперпозиция и запутанность, для выполнения операций с данными.

В классическом (или обычном) компьютере информация хранится в битах; в квантовом компьютере они хранятся в виде кубитов (квантовых битов).

Основной принцип квантовых вычислений состоит в том, что квантовые свойства могут использоваться для представления и структурирования данных, и что квантовые механизмы могут быть разработаны и созданы для выполнения операций с этими данными.

Хотя квантовые вычисления все еще находятся в зачаточном состоянии, были проведены эксперименты, в которых операции квантовых вычислений выполнялись на очень небольшом количестве кубитов.

Исследования как в теоретической, так и в практической областях продолжаются бешеными темпами, и многие национальные правительственные и военные финансовые агентства поддерживают исследования квантовых вычислений для разработки квантовых компьютеров как для гражданских, так и для целей национальной безопасности, таких как криптоанализ.

Если удастся построить крупномасштабные квантовые компьютеры, они смогут решать определенные задачи экспоненциально быстрее, чем любой из наших нынешних классических компьютеров (например, алгоритм Шора).

Квантовые компьютеры отличаются от других компьютеров, таких как ДНК-компьютеры и традиционные компьютеры на транзисторах.

Некоторые вычислительные архитектуры, такие как оптические компьютеры, могут использовать классическую суперпозицию электромагнитных волн, но без некоторых специфических квантово-механических ресурсов, таких как запутанность, они имеют меньший потенциал для ускорения вычислений, чем квантовые компьютеры.

Мощность квантовых компьютеров Целочисленная факторизация считается вычислительно невыполнимой с обычным компьютером для больших целых чисел, которые являются произведением только нескольких простых чисел (например,g., произведения двух 300-значных простых чисел).

Для сравнения: квантовый компьютер мог бы решить эту проблему более эффективно, чем классический компьютер, используя алгоритм Шора для поиска факторов.

Эта способность позволила бы квантовому компьютеру «взломать» многие криптографические системы, используемые сегодня, в том смысле, что для решения проблемы существовал бы алгоритм с полиномиальным временем (в количестве битов целого числа).

В частности, большинство популярных шифров с открытым ключом основаны на сложности факторизации целых чисел, включая формы RSA.

Они используются для защиты защищенных веб-страниц, зашифрованной электронной почты и многих других типов данных.

Их нарушение может иметь серьезные последствия для электронной конфиденциальности и безопасности.

Единственный способ повысить безопасность такого алгоритма, как RSA, - это увеличить размер ключа и надеяться, что у злоумышленника нет ресурсов для создания и использования достаточно мощного квантового компьютера.

Кажется правдоподобным, что всегда можно будет построить классические компьютеры, у которых битов больше, чем количество кубитов в самом большом квантовом компьютере.

.

Смотрите также